Deakin University
Browse
haque-halotolerantbiofilm-2022.pdf (10.96 MB)

Halotolerant biofilm-producing rhizobacteria mitigate seawater-induced salt stress and promote growth of tomato

Download (10.96 MB)
journal contribution
posted on 2022-01-01, 00:00 authored by M M Haque, M S Biswas, M K Mosharaf, Amdadul Haque, M S Islam, K Nahar, M M Islam, H B Shozib, Ferdous-E-Elahi
Biofilm-producing rhizobacteria (BPR) enhance productivity and mitigate abiotic stresses in plants. This study showed that 21 out of 65 halotolerant rhizobacteria could build biofilms. The components of the biofilm matrices i.e., extracellular polymeric substances (EPS) are proteins, curli, nanocelloluse, nucleic acids, lipids, and peptidoglycans. Various functional groups including carbonyl, carboxyl, amino, hydroxyl, and phosphate were identified. Positions of these groups were shifted by application of 5% NaCl, suggesting Na+ biosorption. By sequencing, Glutamicibacter arilaitensis (ESK1, ESM4 and ESM7), G. nicotianae (ESK19, ESM8 and ESM16), Enterobacter ludwigii (ESK15, ESK17, ESM2 and ESM17), E. cloacae (ESM5 and ESM12), Exiguobacterium acetylicum (ESM24 and ESM25), Staphylococcus saprophyticus ESK6, Leclercia adecarboxylata ESK12, Pseudomonas poae ESK16, Bacillus subtilis ESM14, and P. putida ESM17 were identified. These rhizobacteria exhibited numerous plant growth-promoting (PGP) activities including producing IAA, ACC deaminase, and siderophores, and solubilizing phosphate. Under non-stress, bacterized plants increased biomass accumulation (8–23.2% roots and 23–49.4% shoots), while under seawater-induced salt stress only ESK12, ESM4, ESM12, and ESM14 enhanced biomass production (5.8–52.9% roots and 8.8–33.4% shoots). Bacterized plants induced antioxidant defense system (19.5–142% catalase and 12.3–24.2% DPPH radical scavenging activity), retained a greater relative water content (17–124%), showed lesser membrane injuries (19.9–26.5%), and a reduced Na+ (6–24% in roots) and increased K+/Na+ ratio (78.8 and 103% in roots by ESK12 and ESM24, respectively) than the non-bacterized plants in saline conditions. Thus, native halotolerant BPR can be utilized as ameliorators of salt stress.

History

Journal

Scientific Reports

Volume

12

Issue

1

Article number

5599

Pagination

1 - 22

Publisher

Springer Nature

Location

Berlin, Germany

eISSN

2045-2322

Language

eng

Publication classification

C1 Refereed article in a scholarly journal

Usage metrics

    Research Publications

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC