Deakin University
Browse

File(s) under embargo

Highly Crystalline Mesoporous Phosphotungstic Acid: A High‐Performance Electrode Material for Energy‐Storage Applications

journal contribution
posted on 2024-01-30, 04:46 authored by Hamid IlbeygiHamid Ilbeygi, In Young Kim, Min Gyu Kim, Wangsoo Cha, Paskalis Sahaya Murphin Kumar, Dae‐Hwan Park, Ajayan Vinu
AbstractHeteropoly acids (HPAs) are unique materials with interesting properties, including high acidity and proton conductivity. However, their low specific surface area and high solubility in polar solvents make them unattractive for catalytic or energy applications. This obstacle can be overcome by creating nanoporosity within the HPA. We synthesized mesoporous phosphotungstic acid (mPTA) with a spherical morphology through the self‐assembly of phosphotungstic acid (PTA) with a polymeric surfactant as stabilized by KCl and hydrothermal treatment. The mPTA nanostructures had a surface area of 93 m2 g−1 and a pore size of 4 nm. Their high thermal stability (ca. 450 °C) and lack of solubility in ethylene carbonate/diethyl carbonate (EC/DEC) electrolyte are beneficial for lithium‐ion batteries (LIBs). Optimized mPTA showed a reversible capacity of 872 mAh g−1 at 0.1 A g−1 even after 100 cycles for LIBs, as attributed to a super‐reduced state of HPA and the storage of Li ions within the mesochannels of mPTA.

History

Journal

Angewandte Chemie

Volume

131

Pagination

10965-10970

Location

London, Eng.

ISSN

0044-8249

eISSN

1521-3757

Language

eng

Publication classification

C1 Refereed article in a scholarly journal

Issue

32

Publisher

Wiley

Usage metrics

    Research Publications

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC