File(s) not publicly available
Highly catalytically active CeO2-: X-based heterojunction nanostructures with mixed micro/meso-porous architectures
journal contribution
posted on 2023-02-20, 04:37 authored by SS Mofarah, L Schreck, C Cazorla, X Zheng, E Adabifiroozjaei, C Tsounis, J Scott, R Shahmiri, Y Yao, R Abbasi, Y Wang, H Arandiyan, L Sheppard, V Wong, E Doustkhah, P Koshy, CC SorrellThe architectural design of nanocatalysts plays a critical role in the achievement of high densities of active sites but current technologies are hindered by process complexity and limited scaleability. The present work introduces a rapid, flexible, and template-free method to synthesize three-dimensional (3D), mesoporous, CeO2-x nanostructures comprised of extremely thin holey two-dimensional (2D) nanosheets of centimetre-scale. The process leverages the controlled conversion of stacked nanosheets of a newly developed Ce-based coordination polymer into a range of stable oxide morphologies controllably differentiated by the oxidation kinetics. The resultant polycrystalline, hybrid, 2D-3D CeO2-x exhibits high densities of defects and surface area as high as 251 m2 g-1, which yield an outstanding CO conversion performance (T90% = 148 °C) for all oxides. Modification by the creation of heterojunction nanostructures using transition metal oxides (TMOs) results in further improvements in performance (T90% = 88 °C), which are interpreted in terms of the active sites associated with the TMOs that are identified through structural analyses and density functional theory (DFT) simulations. This unparalleled catalytic performance for CO conversion is possible through the ultra-high surface areas, defect densities, and pore volumes. This technology offers the capacity to establish efficient pathways to engineer nanostructures of advanced functionalities for catalysis.
History
Journal
NanoscaleVolume
13Pagination
6764-6771Location
EnglandPublisher DOI
ISSN
2040-3364eISSN
2040-3372Language
EnglishPublication classification
C1.1 Refereed article in a scholarly journalIssue
14Publisher
ROYAL SOC CHEMISTRYUsage metrics
Categories
No categories selectedKeywords
Science & TechnologyPhysical SciencesTechnologyChemistry, MultidisciplinaryNanoscience & NanotechnologyMaterials Science, MultidisciplinaryPhysics, AppliedChemistryScience & Technology - Other TopicsMaterials SciencePhysicsCEO2-WO3 CATALYSTSOXYGEN VACANCIESOXIDECERIANANOSHEETSREDUCTIONCARBONSTORAGEDESIGNSITES7 Affordable and Clean EnergyChemical Sciences