File(s) under permanent embargo
How many common reptile species are fire specialists? a replicated natural experiment highlights the predictive weakness of a fire succession model
journal contribution
posted on 2008-02-01, 00:00 authored by Don DriscollDon Driscoll, M K HendersonSpecies with strong preferences for early or late successional stages after fire may be extinction prone under current fire regimes. However, the extent of specialisation to time since fire is poorly understood, and, for reptiles, succession models for predicting responses are in the development phase. In this study we tested predictions of a reptile succession model, and identified species that may be fire specialists. Reptiles were sampled in five burnt and unburnt mallee Eucalyptus woodlands, Australia. Two, 400 m transects within each burn treatment were sampled using 11 pairs of pitfall-traps that were opened for five weeks over two summers. A habitat accommodation model of succession that was previously developed for mallee reptiles correctly predicted the observed responses of three of 16 common reptile species. A further four species showed non-significant trends in the predicted direction. However, eight other species showed unexpected responses. One species showed a strong interaction between burn age and location, requiring a two-dimensional successional model in contrast with the usual linear models explaining reptile responses to fire. One third of common species were not affected by fire and so may not have increased risks of extinction due to the fire suppression/incineration cycle. However, approximately half to two-thirds of common reptiles did have a fire response, so the risk of deterministic extinction in small fragments may be substantial. Further model development is needed to better predict fire responses and to assist the design of fire mosaics that can accommodate early and late successional fire specialists.
History
Journal
Biological conservationVolume
141Issue
2Pagination
460 - 471Publisher
ElsevierLocation
Amsterdam, The NetherlandsPublisher DOI
ISSN
0006-3207Language
engPublication classification
C1.1 Refereed article in a scholarly journalCopyright notice
2007, ElsevierUsage metrics
Categories
No categories selectedKeywords
Fire managementHabitat accommodation modelLizardAustralian mallee EucalyptusBushfirePrescribed burningScience & TechnologyLife Sciences & BiomedicineBiodiversity ConservationEcologyEnvironmental SciencesBiodiversity & ConservationEnvironmental Sciences & EcologyPOSTFIRE SUCCESSIONLIZARD COMMUNITIESVERTEBRATE FAUNAHABITATVEGETATIONRESPONSESCONSERVATIONFORESTFRAGMENTATIONINTENSITY