Identifying gene signatures that are associatedwith the estrogen receptor based breast cancer samples is achallenging problem that has significant implications in breastcancer diagnosis and treatment. Various existing approaches foridentifying gene signatures have been developed but are not ableto achieve the satisfactory results because of their severallimitations. Subnetwork-based approaches have shown to be arobust classification method that uses interaction datasets suchas protein-protein interaction datasets. It has been reported thatthese interaction datasets contain many irrelevant interactionsthat have no biological meaning associated with them, and thusit is essential to filter out those interactions which can improvethe classification results. In this paper, we therefore, proposed ahub-based reliable gene expression algorithm (HRGE) thateffectively extracts the significant biologically-relevantinteractions and uses hub-gene topology to generate thesubnetwork based gene signatures for ER+ and ER- breastcancer subtypes. The proposed approach shows the superiorclassification accuracy amongst the other existing classifiers, inthe validation dataset.
History
Journal
International journal of bioscience, biochemistry and bioinformatics