Deakin University
Browse

Hyaluronic acid–collagen network interactions during the dynamic compression and recovery of cartilage

journal contribution
posted on 2012-01-01, 00:00 authored by Wren Greene, B Zappone, X Banquy, D Lee, O Söderman, D Topgaard, J Israelachvili
A compression cell designed to fit inside an NMR spectrometer was used to investigate (i) the in situ dynamic strain response and structural changes of the internal pore network, and (ii) the diffusion and flow of interstitial water, in full thickness cartilage samples as they were mechanically deformed under a constant compressive load (pressure) and then allowed to recover (swell again) when the load was removed. Selective enzymatic digestion of the collagen fibril network and the glycopolysaccharide hyaluronic acid (HA) was performed to mimic some of the structural and compositional changes associated with osteoarthritis. Digestion of collagen gave rise to mechanical ‘dynamic softening’ and—perhaps more importantly—nearly complete loss in the ability to recover through swelling, both effects due to the disruption of the hierarchical structure and fibril interconnectivity in the collagen network which adversely affects its ability to deform reversibly and to properly regulate the pressurization and resulting rate and direction of interstitial fluid flow. In contrast, digestion of HA inside the collagen pore network caused the cartilage to ‘dynamically stiffen’ which is attributed to the decrease in the osmotic (entropic) pressure of the digested HA molecules confined in the cartilage pores that causes the network to contract and thereby become less permeable to flow. These digestioninduced changes in cartilage’s properties reveal a complex relationship between the molecular weight and concentration of the HA in the interstitial fluid, and the structure and properties of the collagen fibril pore network, and provide new insights into how changes in either could influence the onset and progression of osteoarthritis.

History

Journal

Soft matter

Volume

8

Pagination

9906 - 9914

Location

London, England

ISSN

1744-683X

eISSN

1744-6848

Language

eng

Publication classification

C1 Refereed article in a scholarly journal