Deakin University
Browse

IUGR in the absence of postnatal 'catch-up' growth leads to improved whole body insulin sensitivity in rat offspring

Download (678.51 kB)
journal contribution
posted on 2011-10-01, 00:00 authored by K Lim, James ArmitageJames Armitage, A Stefanidis, B Oldfield, M Black
A suboptimal in utero environment leads to fetal adaptations to ensure short-term survival but in the long-term may lead to disease when the postnatal growth does not reflect that in utero. This study examined the effect of IUGR on whole body insulin sensitivity and metabolic activity in adult rats. Female Wistar-Kyoto rats were fed either a normal protein diet (NPD 20% casein) or a low protein diet (LPD; 8.7% casein) during pregnancy and 2 wk of lactation. In offspring at 32 wk of age, indirect calorimetry and dual energy x-ray absorptiometry (DEXA) were performed to assess metabolic activity and body composition. Insulin sensitivity was assessed using a euglycemic-hyperinsulinemic clamp. At 3 d of age, male and female LPD offspring were 23 and 27% smaller than controls, respectively. They remained significantly smaller throughout the experimental period (~10% smaller at 32 wk). Importantly, there was increased insulin sensitivity in LPD offspring (47% increase in males and 38% increase in females); pancreatic insulin content was normal. Body composition, O2 consumption, respiratory exchange ratio (RER), and locomotor activity were not different to controls. These findings suggest that in the absence of “catch-up” growth IUGR programs for improved insulin sensitivity.

History

Journal

Pediatric research

Volume

70

Pagination

339-344

Location

New York, N.Y.

Open access

  • Yes

ISSN

0031-3998

eISSN

1530-0447

Language

eng

Publication classification

C1.1 Refereed article in a scholarly journal

Copyright notice

2011, Nature Publishing Group

Issue

4

Publisher

Nature Publishing Group