Deakin University
Browse
- No file added yet -

Identification of novel therapeutics for complex diseases from genome-wide association data

Download (1.34 MB)
Version 3 2024-06-17, 10:48
Version 2 2024-06-04, 02:36
Version 1 2015-03-11, 11:25
journal contribution
posted on 2024-06-17, 10:48 authored by MP Grover, S Ballouz, KA Mohanasundaram, RA George, CD H Sherman, Tamsyn CrowleyTamsyn Crowley, MA Wouters
Human genome sequencing has enabled the association of phenotypes with genetic loci, but our ability to effectively translate this data to the clinic has not kept pace. Over the past 60 years, pharmaceutical companies have successfully demonstrated the safety and efficacy of over 1,200 novel therapeutic drugs via costly clinical studies. While this process must continue, better use can be made of the existing valuable data. In silico tools such as candidate gene prediction systems allow rapid identification of disease genes by identifying the most probable candidate genes linked to genetic markers of the disease or phenotype under investigation. Integration of drug-target data with candidate gene prediction systems can identify novel phenotypes which may benefit from current therapeutics. Such a drug repositioning tool can save valuable time and money spent on preclinical studies and phase I clinical trials.

History

Journal

BMC Medical Genomics

Volume

7

Article number

ARTN S8

Location

Seoul, SOUTH KOREA

Open access

  • Yes

ISSN

1755-8794

eISSN

1755-8794

Language

English

Publication classification

C Journal article, C1 Refereed article in a scholarly journal

Copyright notice

2014, BioMed Central

Issue

SUPPL.1

Publisher

BMC