Deakin University
Browse

File(s) under permanent embargo

Identifying Multiple Influential Spreaders in Complex Networks by Considering the Dispersion of Nodes

journal contribution
posted on 2022-09-29, 03:20 authored by L Tao, M Liu, Zili ZhangZili Zhang, L Luo
Identifying multiple influential spreaders, which relates to finding k (k > 1) nodes with the most significant influence, is of great importance both in theoretical and practical applications. It is usually formulated as a node-ranking problem and addressed by sorting spreaders’ influence as measured based on the topological structure of interactions or propagation process of spreaders. However, ranking-based algorithms may not guarantee that the selected spreaders have the maximum influence, as these nodes may be adjacent, and thus play redundant roles in the propagation process. We propose three new algorithms to select multiple spreaders by taking into account the dispersion of nodes in the following ways: (1) improving a well-performed local index rank (LIR) algorithm by extending its key concept of the local index (an index measures how many of a node’s neighbors have a higher degree) from first-to second-order neighbors; (2) combining the LIR and independent set (IS) methods, which is a generalization of the coloring problem for complex networks and can ensure the selected nodes are non-adjacent if they have the same color; (3) combining the improved second-order LIR method and IS method so as to make the selected spreaders more disperse. We evaluate the proposed methods against six baseline methods on 10 synthetic networks and five real networks based on the classic susceptible-infected-recovered (SIR) model. The experimental results show that our proposed methods can identify nodes that are more influential. This suggests that taking into account the distances between nodes may aid in the identification of multiple influential spreaders.

History

Journal

Frontiers in Physics

Volume

9

Publisher

Frontiers Media SA

eISSN

2296-424X

Publication classification

C1.1 Refereed article in a scholarly journal

Usage metrics

    Research Publications

    Categories

    No categories selected

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC