Deakin University
Browse

Impact of pv system tracking on energy production and climate change

Download (221.13 kB)
Version 2 2024-06-04, 04:50
Version 1 2021-09-14, 08:11
journal contribution
posted on 2021-09-01, 00:00 authored by W Ahmed, J A Sheikh, M A Parvez Mahmud
Green energy by PV systems reduces the dependence on fossil fuel-based power plants. Maximizing green energy to meet the demand reduces the burden on conventional power plants, hence lesser burning and greenhouse gases (GHG) emissions. For this purpose, this study draws a relationship between tracking schemes of the PV systems to GHG mitigation potential. The best fit location for detailed analyses is selected among the 15 most populous cities of Australia. The solar radiation potential is increased to 7.78 kWh/m2/d through dual axes tracking compared to 7.54, 6.82, 5.94, 5.73 kWh/m2/d through the one axis, azimuth based, fixed-tilted, and fixed-horizontal surface schemes, respectively. Through the dual axes tracking scheme, a 1 MW PV system per annum energy output avoids the burning of 796,065.3 L of gasoline, 4308.7 barrels of crude oil which is equal to the mitigation of 1852.7 tCO2 equivalent GHGs. Concisely, the PV system, through its green energy output, can avoid the release of greenhouse gases from fossil-fuel plants to tackle climate change more effectively.

History

Journal

Energies

Volume

14

Issue

17

Pagination

5348 - 5348

Publisher

MDPI

Location

Basel, Switzerland

eISSN

1996-1073

Language

eng

Publication classification

C1 Refereed article in a scholarly journal

Usage metrics

    Research Publications

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC