Improved support vector machine generalization using normalized input space
journal contribution
posted on 2006-01-01, 00:00authored byS Ali, K Smith-Miles
Data pre-processing always plays a key role in learning algorithm performance. In this research we consider data pre-processing by normalization for Support Vector Machines (SVMs). We examine the normalization affect across 112 classification problems with SVM using the rbf kernel. We observe a significant classification improvement due to normalization. Finally we suggest a rule based method to find when normalization is necessary for a specific classification problem. The best normalization method is also automatically selected by SVM itself.