Interior permanent magnet (IPM) synchronous machines have gained increased attention for applications in electric vehicle, variable speed wind turbine, industrial drives, etc., because of their high torque density, wider speed range and compact construction. The authors present a detailed analysis and modelling of control trajectories and incorporate those trajectories in the direct torque control (DTC) scheme of an IPM synchronous motor drive, for constant-torque and constant-power operating regions. The control trajectories are implemented on a real-time digital signal processor. Because the inputs to the inner torque control loop of DTC are the references for the torque and the amplitude of the stator flux linkage (λ s ), they are transformed in the T-λ s plane, than in the i d -i q plane in the indirect control. The modelling and experimental results are presented. Results show very good dynamic and steady-state performances of direct torque controller, incorporating these control trajectories.