Deakin University
Browse

File(s) under permanent embargo

Incremental and adaptive clustering stream data over sliding window

journal contribution
posted on 2009-01-01, 00:00 authored by X Dang, V Lee, Weng Keet Ng, Kok-Leong Ong
Cluster analysis has played a key role in data stream understanding. The problem is difficult when the clustering task is considered in a sliding window model in which the requirement of outdated data elimination must be dealt with properly. We propose SWEM algorithm that is designed based on the Expectation Maximization technique to address these challenges. Equipped in SWEM is the capability to compute clusters incrementally using a small number of statistics summarized over the stream and the capability to adapt to the stream distribution’s changes. The feasibility of SWEM has been verified via a number of experiments and we show that it is superior than Clustream algorithm, for both synthetic and real datasets.

History

Journal

Lecture notes in computer science

Volume

5690

Pagination

660 - 674

Publisher

Springer

Location

Heidelberg, Germany

ISSN

0302-9743

eISSN

1611-3349

Language

eng

Publication classification

C1 Refereed article in a scholarly journal

Copyright notice

2009, Springer-Verlag

Usage metrics

    Research Publications

    Categories

    No categories selected

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC