Individual Differences in Intrinsic Brain Networks Predict Symptom Severity in Autism Spectrum Disorders
Version 2 2024-06-04, 13:36Version 2 2024-06-04, 13:36
Version 1 2021-01-15, 11:08Version 1 2021-01-15, 11:08
journal contribution
posted on 2024-06-04, 13:36authored byEPK Pua, P Thomson, JYM Yang, Jeffrey CraigJeffrey Craig, G Ball, M Seal
The neurobiology of heterogeneous neurodevelopmental disorders such as Autism Spectrum Disorders (ASD) is still unknown. We hypothesized that differences in subject-level properties of intrinsic brain networks were important features that could predict individual variation in ASD symptom severity. We matched cases and controls from a large multicohort ASD dataset (ABIDE-II) on age, sex, IQ, and image acquisition site. Subjects were matched at the individual level (rather than at group level) to improve homogeneity within matched case–control pairs (ASD: n = 100, mean age = 11.43 years, IQ = 110.58; controls: n = 100, mean age = 11.43 years, IQ = 110.70). Using task-free functional magnetic resonance imaging, we extracted intrinsic functional brain networks using projective non-negative matrix factorization. Intrapair differences in strength in subnetworks related to the salience network (SN) and the occipital-temporal face perception network were robustly associated with individual differences in social impairment severity (T = 2.206, P = 0.0301). Findings were further replicated and validated in an independent validation cohort of monozygotic twins (n = 12; 3 pairs concordant and 3 pairs discordant for ASD). Individual differences in the SN and face-perception network are centrally implicated in the neural mechanisms of social deficits related to ASD.