Deakin University
Browse

Individual stable space : an approach to face recognition under uncontrolled conditions

Download (748.57 kB)
journal contribution
posted on 2008-01-01, 00:00 authored by X Geng, Z H Zhou, K Smith-Miles
There usually exist many kinds of variations in face images taken under uncontrolled conditions, such as changes of pose, illumination, expression, etc. Most previous works on face recognition (FR) focus on particular variations and usually assume the absence of others. Instead of such a ldquodivide and conquerrdquo strategy, this paper attempts to directly address face recognition under uncontrolled conditions. The key is the individual stable space (ISS), which only expresses personal characteristics. A neural network named ISNN is proposed to map a raw face image into the ISS. After that, three ISS-based algorithms are designed for FR under uncontrolled conditions. There are no restrictions for the images fed into these algorithms. Moreover, unlike many other FR techniques, they do not require any extra training information, such as the view angle. These advantages make them practical to implement under uncontrolled conditions. The proposed algorithms are tested on three large face databases with vast variations and achieve superior performance compared with other 12 existing FR techniques.

History

Journal

IEEE transactions on neural networks

Volume

19

Pagination

1354 - 1368

Location

Piscataway, N.J.

Open access

  • Yes

ISSN

1045-9227

eISSN

1941-0093

Language

eng

Publication classification

C1 Refereed article in a scholarly journal

Copyright notice

2008, IEEE

Usage metrics

    Research Publications

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC