Deakin University
Browse

File(s) not publicly available

Infant growth by INTERGROWTH‐21st and Fenton Growth Charts: Predicting 1‐year anthropometry in South African preterm infants

journal contribution
posted on 2024-07-03, 04:21 authored by Sanja Nel, Ute Dagmar Feucht, Tanita BothaTanita Botha, Friedeburg Anna Maria Wenhold
AbstractPost‐natal growth influences short‐ and long‐term preterm infant outcomes. Different growth charts, such as the Fenton Growth Chart (FGC) and INTERGROWTH‐21st Preterm Post‐natal Growth Standards (IG‐PPGS), describe different growth curves and targets. This study compares FGC‐ and IG‐PPGS‐derived weight‐for‐postmenstrual age z‐score (WZ) up to 50 weeks postmenstrual age (PMA50) for predicting 1‐year anthropometry in 321 South African preterm infants. The change in WZ from birth to PMA50 (ΔWZ, calculated using FGC and IG‐PPGS) was correlated to age‐corrected 1‐year anthropometric z‐scores for weight‐for‐age (WAZ), length‐for‐age (LAZ), weight‐for‐length (WLZ) and BMI‐for‐age (BMIZ), and categorically compared with rates of underweight (WAZ < −2), stunting (LAZ < −2), wasting (WLZ < −2) and overweight (BMIZ > + 2). Multivariable analyses explored the effects of other early‐life exposures on malnutrition risk. At PMA50, mean WZ was significantly higher on IG‐PPGS (−0.56 ± 1.52) than FGC (−0.90 ± 1.52; p < 0.001), but ΔWZ was similar (IG‐PPGS −0.26 ± 1.23, FGC −0.11 ± 1.14; p = 0.153). Statistically significant ΔWZ differences emerged among small‐for‐gestational age infants (FGC −0.38 ± 1.22 vs. IG‐PPGS −0.01 ± 1.30; p < 0.001) and appropriate‐for‐gestational age infants (FGC + 0.02 ± 1.08, IG‐PPGS −0.39 ± 1.18; p < 0.001). Correlation coefficients of ΔWZ with WAZ, LAZ, WLZ and BMIZ were low (r < 0.45), though higher for FGC than IG‐PPGS. Compared with IG‐PPGS, ΔWZ < −1 on FGC predicted larger percentages of underweight (42% vs. 36%) and wasting (43% vs. 39%) and equal percentages of stunting (33%), while ΔWZ > + 1 predicted larger percentages overweight (57% vs. 38%). Both charts performed similarly in multivariable analysis. Differences between FGC and IG‐PPGS are less apparent when considering ΔWZ, highlighting the importance of assessing growth as change over time, irrespective of growth chart.

History

Journal

Maternal and Child Nutrition

Article number

e13663

Pagination

1-12

Location

London, Eng.

ISSN

1740-8695

eISSN

1740-8709

Language

eng

Publication classification

C1.1 Refereed article in a scholarly journal

Publisher

Wiley

Usage metrics

    Research Publications

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC