File(s) not publicly available
Integrating simulation models and statistical models using causal modelling principles to predict aquatic macroinvertebrate responses to climate change
journal contribution
posted on 2023-03-02, 05:22 authored by Chi LeChi Le, Warren L Paul, Ben Gawne, Phillip SuterClimate change is projected to threaten ecological communities through changes in temperature, rainfall, runoff patterns, and mediated changes in other environmental variables. Their combined effects are difficult to comprehend without the mathematical machinery of causal modelling. Using piecewise structural equation modelling, we aim to predict the responses of aquatic macroinvertebrate total abundance and richness to disturbances generated by climate change. Our approach involves integrating an existing hydroclimate-salinity model for the Murray-Darling Basin, Australia, into our recently developed statistical models for macroinvertebrates using long-term monitoring data on macroinvertebrates, water quality, climate, and hydrology, spanning 2,300 km of the Murray River. Our exercise demonstrates the potential of causal modelling for integrating data and models from different sources. As such, optimal use of valuable existing data and merits of previously developed models in the field can be made for exploring the effects of future climate change and management interventions.
History
Journal
Water ResearchVolume
231Article number
119661Pagination
119661-119661Location
EnglandPublisher DOI
ISSN
0043-1354eISSN
1879-2448Language
enPublication classification
C1 Refereed article in a scholarly journalPublisher
Elsevier BVUsage metrics
Categories
No categories selectedKeywords
Biological responseCausal diagramGlobal climate changeIntegrated modelsLong-term monitoring dataClimate ChangeModels, TheoreticalModels, StatisticalWater QualityAustraliaRiversEnvironmental MonitoringEcosystem13 Climate ActionSchool of Life and Environmental SciencesFaculty of Science Engineering and Built Environment