Integration of IoT Sensors to Determine Life Expectancy of Face Masks
Version 2 2024-06-05, 07:27Version 2 2024-06-05, 07:27
Version 1 2023-02-08, 23:36Version 1 2023-02-08, 23:36
journal contribution
posted on 2024-06-05, 07:27authored byVilanya Ratnayake Mudiyanselage, Kevin LeeKevin Lee, Alireza Hassani
Personal protective equipment (PPE) is widely used around the world to protect against environmental hazards. With the emergence of the COVID-19 virus, the use of PPE domestically has increased dramatically. People use preventive and protective mechanisms now more than ever, leading to the important question of how protective is the PPE that is being used. Face masks are highly recommended or mandatory during the time of the COVID-19 pandemic due to their protective features against aerosol droplets. However, an issue faced by many users of face masks is that they are entirely manual, with users having to decide for themselves whether their mask is still protective or if they should replace their mask. Due to the difficulty in determining this, people tend to overuse masks beyond their optimal usage. The research presented in this paper is an investigation of the viability of integrating IoT sensors into masks that are capable of collecting data to determine its usage. This paper demonstrates the usage of humidity and temperature sensors for the purpose of determining a mask’s usage status based on changes in these variables when a mask is put on and taken off. An evaluation was made on the usage of the two sensors, with the conclusion that a humidity sensor provides more accurate results. From this, we present a framework that takes into consideration the factors that affect a mask’s performance, such as time, humidity and temperature, to calculate the life expectancy of a mask.