Deakin University
Browse

File(s) not publicly available

Intelligent depression detection with asynchronous federated optimization

journal contribution
posted on 2022-09-29, 03:40 authored by Jinli Li, Ming Jiang, Yunbai Qin, Ran ZhangRan Zhang, Sai Ho Ling
AbstractThe growth of population and the various intensive life pressures everyday deepen the competitions among people. Tens of millions of people each year suffer from depression and only a fraction receives adequate treatment. The development of social networks such as Facebook, Twitter, Weibo, and QQ provides more convenient communication and provides a new emotional vent window. People communicate with their friends, sharing their opinions, and shooting videos to reflect their feelings. It provides an opportunity to detect depression in social networks. Although depression detection using social networks has reflected the established connectivity across users, fewer researchers consider the data security and privacy-preserving schemes. Therefore, we advocate the federated learning technique as an efficient and scalable method, where it enables the handling of a massive number of edge devices in parallel. In this study, we conduct the depression analysis on the basis of an online microblog called Weibo. A novel algorithm termed as CNN Asynchronous Federated optimization (CAFed) is proposed based on federated learning to improve the communication cost and convergence rate. It is shown that our proposed method can effectively protect users' privacy under the premise of ensuring the accuracy of prediction. The proposed method converges faster than the Federated Averaging (FedAvg) for non-convex problems. Federated learning techniques can identify quality solutions of mental health problems among Weibo users.

History

Journal

Complex & Intelligent Systems

Publisher

Springer Science and Business Media LLC

ISSN

2199-4536

eISSN

2198-6053

Language

en

Usage metrics

    Research Publications

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC