Deakin University
Browse
barbante-iridiumIII-2015.pdf (1.95 MB)

Iridium(III) N-heterocyclic carbene complexes: an experimental and theoretical study of structural, spectroscopic, electrochemical and electrogenerated chemiluminescence properties

Download (1.95 MB)
journal contribution
posted on 2015-01-01, 00:00 authored by Gregory Barbante, Egan DoevenEgan Doeven, Paul FrancisPaul Francis, B D Stringer, C F Hogan, P R Kheradmand, D J Wilson, P J Barnard
Four cationic heteroleptic iridium(III) complexes have been prepared from methyl- or benzyl-substituted chelating imidazolylidene or benzimidazolylidene ligands using a Ag(I) transmetallation protocol. The synthesised iridium(III) complexes were characterised by elemental analysis, (1)H and (13)C NMR spectroscopy and the molecular structures for three complexes were determined by single crystal X-ray diffraction. A combined theoretical and experimental investigation into the spectroscopic and electrochemical properties of the series was performed in order to gain understanding into the factors influencing photoluminescence and electrochemiluminescence efficiency for these complexes, with the results compared with those of similar NHC complexes of iridium and ruthenium. The N^C coordination mode in these complexes is thought to stabilise thermally accessible non-emissive states relative to the case with analogous complexes with C^C coordinated NHC ligands, resulting in low quantum yields. As a result of this and the instability of the oxidised and reduced forms of the complexes, the electrogenerated chemiluminescence intensities for the compounds are also low, despite favourable energetics. These studies provide valuable insights into the factors that must be considered when designing new NHC-based luminescent complexes.

History

Journal

Dalton transactions

Volume

44

Issue

18

Pagination

8564 - 8576

Publisher

Royal Society of Chemistry

Location

London, Eng.

ISSN

1477-9226

eISSN

1477-9234

Language

eng

Publication classification

C Journal article; C1 Refereed article in a scholarly journal

Copyright notice

2015, The Authors