Deakin University
Browse

File(s) under permanent embargo

Joint power allocation and beamforming for non-orthogonal multiple access (NOMA) in 5G millimeter wave communications

journal contribution
posted on 2018-05-01, 00:00 authored by Z Xiao, L Zhu, Jinho ChoiJinho Choi, P Xia, X G Xia
In this paper, we explore non-orthogonal multiple access (NOMA) in millimeter-wave (mm-wave) communications (mm-wave-NOMA). In particular, we consider a typical problem, i.e., maximization of the sum rate of a 2-user mm-wave-NOMA system. In this problem, we need to find the beamforming vector to steer towards the two users simultaneously subject to an analog beamforming structure, while allocating appropriate power to them. As the problem is non-convex and may not be converted to a convex problem with simple manipulations, we propose a suboptimal solution to this problem. The basic idea is to decompose the original joint beamforming and power allocation problem into two sub-problems which are relatively easy to solve: one is a power and beam gain allocation problem, and the other is a beamforming problem under a constant-modulus constraint. Extension of the proposed solution from 2-user mm-wave-NOMA to more-user mm-wave-NOMA is also discussed. Extensive performance evaluations are conducted to verify the rational of the proposed solution, and the results also show that the proposed sub-optimal solution achieves close-to-bound sum-rate performance, which is significantly better than that of time-division multiple access.

History

Journal

IEEE transactions on wireless communications

Volume

17

Issue

5

Pagination

2961 - 2974

Publisher

IEEE

Location

Piscataway, N.J.

ISSN

1536-1276

Language

eng

Publication classification

C1.1 Refereed article in a scholarly journal

Copyright notice

2018, IEEE