barrow-lcesiqtofmsmsprofiling-2021-.pdf (1.72 MB)
Download file

LC-ESI-QTOF-MS/MS profiling and antioxidant activity of phenolics from custard apple fruit and by-products

Download (1.72 MB)
journal contribution
posted on 2021-05-01, 00:00 authored by Junxi Du, Biming Zhong, Vigasini Subbiah, Colin BarrowColin Barrow, Frank R Dunshea, Hafiz SuleriaHafiz Suleria
Custard apple is an edible fruit grown in tropical and subtropical regions. Due to its abundant nutrient content and perceived health benefits, it is a popular food for consumption and is utilized as a medicinal aid. Although some published research had provided the phenolic compound of custard apple, the comprehensive phenolic profiling of Australian grown custard apple is limited. Hence, this research aimed to evaluate the phenolic content and antioxidant potential by various phenolic content and antioxidant assays, followed by characterization and quantification of the phenolic profile using LC-ESI-QTOF-MS/MS and HPLC-PDA. African Pride peel had the highest value in TPC (61.69 ± 1.48 mg GAE/g), TFC (0.42 ± 0.01 mg QE/g) and TTC (43.25 ± 6.70 mg CE/g), followed by Pink’s Mammoth peel (19.37 ± 1.48 mg GAE/g for TPC, 0.27 ± 0.03 mg QE/g for TFC and 10.25 ± 1.13 mg CE/g for TTC). African Pride peel also exhibited the highest antioxidant potential for TAC (43.41 ± 1.66 mg AAE/g), FRAP (3.60 ± 0.14 mg AAE/g) and ABTS (127.67 ± 4.60 mg AAE/g), whereas Pink’s Mammoth peel had the highest DPPH (16.09 ± 0.34 mg AAE/g), RPA (5.32 ± 0.14 mg AAE/g), •OH-RSA (1.23 ± 0.25 mg AAE/g) and FICA (3.17 ± 0.18 mg EDTA/g). LC-ESI-QTOF-MS/MS experiment successfully characterized 85 phenolic compounds in total, encompassing phenolic acids (20), flavonoids (42), stilbenes (4), lignans (6) and other polyphenols (13) in all three parts (pulp, peel and seeds) of custard apple. The phenolic compounds in different portions of custard apples were quantified by HPLC-PDA, and it was shown that African Pride peel had higher concentrations of the most abundant phenolics. This is the first study to provide the comprehensive phenolic profile of Australian grown custard apples, and the results highlight that each part of custard apple can be a rich source of phenolics for the utilization of custard apple fruit and waste in the food, animal feeding and nutraceutical industries.

History

Journal

Separations

Volume

8

Issue

5

Pagination

62 - 62

Publisher

MDPI AG

Location

Basel, Switzerland

eISSN

2297-8739

Language

eng

Publication classification

C1 Refereed article in a scholarly journal