Deakin University
Browse

Large-scale image clustering based on camera fingerprints

Download (1.6 MB)
journal contribution
posted on 2017-04-01, 00:00 authored by X Lin, Chang-Tsun LiChang-Tsun Li
Practical applications of digital forensics are often faced with the challenge of grouping large-scale suspicious images into a vast number of clusters, each containing images taken by the same camera. This task can be approached by resorting to the use of sensor pattern noise (SPN), which serves as the fingerprint of the camera. The challenges of large-scale image clustering come from the sheer volume of the image set and the high dimensionality of each image. The difficulties can be further aggravated when the number of classes (i.e., the number of cameras) is much higher than the average size of class (i.e., the number of images acquired by each camera). We refer to this as the NC\gg SC problem, which is not uncommon in many practical scenarios. In this paper, we propose a novel clustering framework that is capable of addressing the NC\gg SC problem without a training process. The proposed clustering framework was evaluated on the Dresden image database and compared with the state-of-the-art SPN-based image clustering algorithms. Experimental results show that the proposed clustering framework is much faster than the state-of-the-art algorithms while maintaining a high level of clustering quality.

History

Journal

IEEE transactions on information forensics and security

Volume

12

Pagination

793-808

Location

Piscataway, N.J.

Open access

  • Yes

ISSN

1556-6013

Language

eng

Publication classification

C1.1 Refereed article in a scholarly journal

Copyright notice

2016, IEEE

Issue

4

Publisher

Institute of Electrical and Electronics Engineers

Usage metrics

    Research Publications

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC