Deakin University
Browse

Literature consistency of bioinformatics sequence databases is effective for assessing record quality

Download (2.32 MB)
Version 2 2024-06-18, 17:41
Version 1 2019-11-02, 11:19
journal contribution
posted on 2024-06-18, 17:41 authored by Mohamed Reda BouadjenekMohamed Reda Bouadjenek, K Verspoor, J Zobel
© The Author(s) 2017. Published by Oxford University Press. Bioinformatics sequence databases such as Genbank or UniProt contain hundreds of millions of records of genomic data. These records are derived from direct submissions from individual laboratories, as well as from bulk submissions from large-scale sequencing centres; their diversity and scale means that they suffer from a range of data quality issues including errors, discrepancies, redundancies, ambiguities, incompleteness and inconsistencies with the published literature. In this work, we seek to investigate and analyze the data quality of sequence databases from the perspective of a curator, who must detect anomalous and suspicious records. Specifically, we emphasize the detection of inconsistent records with respect to the literature. Focusing on GenBank, we propose a set of 24 quality indicators, which are based on treating a record as a query into the published literature, and then use query quality predictors. We then carry out an analysis that shows that the proposed quality indicators and the quality of the records have a mutual relationship, in which one depends on the other. We propose to represent record-literature consistency as a vector of these quality indicators. By reducing the dimensionality of this representation for visualization purposes using principal component analysis, we show that records which have been reported as inconsistent with the literature fall roughly in the same area, and therefore share similar characteristics. By manually analyzing records not previously known to be erroneous that fall in the same area than records know to be inconsistent, we show that one record out of four is inconsistent with respect to the literature. This high density of inconsistent record opens the way towards the development of automatic methods for the detection of faulty records. We conclude that literature inconsistency is a meaningful strategy for identifying suspicious records.

History

Journal

Database

Volume

2017

Article number

ARTN bax021

Pagination

1 - 13

Location

England

Open access

  • Yes

ISSN

1758-0463

eISSN

1758-0463

Language

English

Publication classification

C1.1 Refereed article in a scholarly journal

Issue

1

Publisher

OXFORD UNIV PRESS