posted on 2025-03-05, 21:51authored byBin Ji, Haiyang Huang, Yu Gao, Fangliang Zhu, Jie Gao, Chen Chen, Samson YuSamson Yu, Zenghai Zhao
With the increasing presence of large-scale new energy sources, such as wind and photovoltaic (PV) systems, integrating traditional hydropower with wind and PV power into a hydro–wind–PV complementary system in economic dispatch can effectively mitigate wind and PV fluctuations. In this study, Markov chains and the Copula joint distribution function were adopted to quantize the spatiotemporal relationships among hydro, wind and PV, whereby runoff, wind, and PV output scenarios were generated to simulate their uncertainties. A dual-objective optimization model is proposed for the long-term hydro–wind–PV co-scheduling (LHWP-CS) problem. To solve the model, a well-tailored evolutionary multi-objective optimization method was developed, which combines multiple recombination operators and two different dominance rules for basic and elite populations. The proposed model and algorithm were tested on three annual reservoirs with large wind and PV farms in the Hongshui River Basin. The proposed algorithm demonstrates superior performance, with average improvements of 2.90% and 2.63% in total power generation, and 1.23% and 0.96% in minimum output expectation compared to BORG and NSGA-II, respectively. The results also infer that the number of scenarios is a key parameter in achieving a tradeoff between economics and risk.