Deakin University
Browse

File(s) under permanent embargo

Low-cost blood plasma separation method using salt functionalized paper

journal contribution
posted on 2015-06-08, 00:00 authored by Azadeh Nilghaz, Wei Shen
This study describes an extremely low-cost method for separating plasma in a sample of whole human blood on salt functionalized paper by means of osmotic pressure. When a sample of whole blood was introduced onto the salt functionalized paper, plasma dissolves the salt and places the red blood cells (RBCs) in a hypertonic medium. This leads to the generation of osmotic pressure across the cells membrane, and also the crenation of RBCs. The effect of different concentrations of salt on RBC deformation and crenation has been monitored using confocal microscopy. Depending upon the salt concentration, RBCs deform into various shapes under osmotic pressure. At high salt concentration, RBCs turn into deflated thin disks. This increases the RBCs' contact with one another and with fibres in the paper as well. Besides, the counter ion valency charge of the Na+ suppresses the thickness of the charged double layer of RBC. Subsequently, aggregation of the deflated RBCs occurs. The aggregates are large enough to be separated chromatographically from the plasma phase of the wicking front. Our results show that 0.5 μL addition of 0.68 M (4% w/v) saline solution (NaCl) can provide sufficient plasma separation on a filter paper for diagnostic applications. A colorimetric blood glucose concentration assay is employed to demonstrate the efficiency of this plasma separation method on paper. The experimental investigation indicates that although the crenation of RBCs forced a small amount of water into plasma, this method is suitable for performing glucose assay in human blood on paper. Our method can enhance bioassays performed on microfluidic paper-based analytical devices (μPADs) by combining the separation and testing of plasma into a single device with no significant additional cost.

History

Journal

RSC Advances

Volume

5

Pagination

53172-53179

Location

Cambridge, Eng.

ISSN

2046-2069

eISSN

2046-2069

Language

eng

Publication classification

C1.1 Refereed article in a scholarly journal

Copyright notice

2015, Royal Society of Chemistry

Issue

66

Publisher

Royal Society of Chemistry

Usage metrics

    Research Publications

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC