Deakin University
Browse

File(s) under permanent embargo

MOF-Like 3D Graphene-Based Catalytic Membrane Fabricated by One-Step Laser Scribing for Robust Water Purification and Green Energy Production

journal contribution
posted on 2023-02-20, 03:35 authored by X Huang, L Li, Shuaifei ZhaoShuaifei Zhao, L Tong, Z Li, Z Peng, R Lin, L Zhou, C Peng, KH Xue, L Chen, GJ Cheng, Z Xiong, L Ye
Increasing both clean water and green energy demands for survival and development are the grand challenges of our age. Here, we successfully fabricate a novel multifunctional 3D graphene-based catalytic membrane (3D-GCM) with active metal nanoparticles (AMNs) loading for simultaneously obtaining the water purification and clean energy generation, via a “green” one-step laser scribing technology. The as-prepared 3D-GCM shows high porosity and uniform distribution with AMNs, which exhibits high permeated fluxes (over 100 L m−2 h−1) and versatile super-adsorption capacities for the removal of tricky organic pollutants from wastewater under ultra-low pressure-driving (0.1 bar). After adsorption saturating, the AMNs in 3D-GCM actuates the advanced oxidization process to self-clean the fouled membrane via the catalysis, and restores the adsorption capacity well for the next time membrane separation. Most importantly, the 3D-GCM with the welding of laser scribing overcomes the lateral shear force damaging during the long-term separation. Moreover, the 3D-GCM could emit plentiful of hot electrons from AMNs under light irradiation, realizing the membrane catalytic hydrolysis reactions for hydrogen energy generation. This “green” precision manufacturing with laser scribing technology provides a feasible technology to fabricate high-efficient and robust 3D-GCM microreactor in the tricky wastewater purification and sustainable clean energy production as well.[Figure not available: see fulltext.]

History

Journal

Nano-Micro Letters

Volume

14

Article number

ARTN 174

Location

Germany

ISSN

2311-6706

eISSN

2150-5551

Language

English

Publication classification

C1 Refereed article in a scholarly journal

Issue

1

Publisher

SHANGHAI JIAO TONG UNIV PRESS