Deakin University
Browse

File(s) under permanent embargo

Machine Learning and Data Analytics for the IoT

Version 2 2024-06-05, 04:14
Version 1 2020-03-24, 12:02
journal contribution
posted on 2020-01-01, 00:00 authored by Erwin Adi, Adnan AnwarAdnan Anwar, Zubair BaigZubair Baig, Sherali Zeadally
The Internet of Things (IoT) applications have grown in exorbitant numbers, generating a large amount of data required for intelligent data processing. However, the varying IoT infrastructures (i.e., cloud, edge, fog) and the limitations of the IoT application layer protocols in transmitting/receiving messages become the barriers in creating intelligent IoT applications. These barriers prevent current intelligent IoT applications to adaptively learn from other IoT applications. In this paper, we critically review how IoT-generated data are processed for machine learning analysis and highlight the current challenges in furthering intelligent solutions in the IoT environment. Furthermore, we propose a framework to enable IoT applications to adaptively learn from other IoT applications and present a case study in how the framework can be applied to the real studies in the literature. Finally, we discuss the key factors that have an impact on future intelligent applications for the IoT.

History

Journal

Neural Computing and Applications

Pagination

1 - 29

Publisher

Springer

Location

Berlin, Germany

ISSN

0941-0643

Language

eng

Notes

In Press

Publication classification

C1 Refereed article in a scholarly journal

Copyright notice

2020, Springer-Verlag London