Deakin University
Browse
clark-maximumthermal-2017.pdf (439.68 kB)

Maximum thermal limits of coral reef damselfishes are size dependent and resilient to near-future ocean acidification

Download (439.68 kB)
Version 2 2024-06-04, 13:24
Version 1 2017-11-21, 19:29
journal contribution
posted on 2024-06-04, 13:24 authored by Timothy ClarkTimothy Clark, DG Roche, SA Binning, B Speers-Roesch, J Sundin
Theoretical models predict that ocean acidification, caused by increased dissolved CO2, will reduce the maximum thermal limits of fishes, thereby increasing their vulnerability to rising ocean temperatures and transient heatwaves. Here, we test this prediction in three species of damselfishes on the Great Barrier Reef, Australia. Maximum thermal limits were quantified using critical thermal maxima (CTmax) tests following acclimation to either present-day or end-of-century levels of CO2 for coral reef environments (∼500 or ∼1,000 µatm, respectively). While species differed significantly in their thermal limits, whereby Dischistodus perspicillatus exhibited greater CTmax (37.88±0.03oC; N=47) than Dascyllus aruanus (37.68±0.02oC; N=85) and Acanthochromis polyacanthus (36.58±0.02oC; N=63), end-of-century CO2 had no effect (D. aruanus) or a slightly positive effect (increase in CTmax of 0.16oC in D. perspicillatus and 0.21oC in A. polyacanthus) on CTmax. Contrary to expectations, smaller individuals were equally as resilient to CO2 as larger conspecifics, and CTmax was higher at smaller body sizes in two species. These findings suggest that ocean acidification will not impair the maximum thermal limits of reef fishes, and they highlight the critical role of experimental biology in testing predictions of theoretical models forecasting the consequences of environmental change.

History

Journal

Journal of Experimental Biology

Volume

220

Pagination

3519-3526

Location

England

Open access

  • Yes

ISSN

0022-0949

eISSN

1477-9145

Language

English

Publication classification

C Journal article, C1.1 Refereed article in a scholarly journal

Copyright notice

2017, The Company of Biologist

Issue

19

Publisher

COMPANY BIOLOGISTS LTD