As cities increase in size, governments and councils face the problem of designing infrastructure and approaches to traffic management that alleviate congestion. The problem of objectively measuring congestion involves taking into account not only the volume of traffic moving throughout a network, but also the inequality or spread of this traffic over major and minor intersections. For modeling such data, we investigate the use of weighted congestion indices based on various aggregation and spread functions. We formulate the weight learning problem for comparison data and use real traffic data obtained from a medium-sized Australian city to evaluate their usefulness.