Deakin University
Browse

Membrane distillation trial on textile wastewater containing surfactants using hydrophobic and hydrophilic-coated polytetrafluoroethylene (PTFE) membranes

Download (1.04 MB)
Version 3 2024-06-18, 09:08
Version 2 2024-06-06, 00:30
Version 1 2018-07-10, 09:26
journal contribution
posted on 2024-06-18, 09:08 authored by JV García, N Dow, Nick MilneNick Milne, J Zhang, L Naidoo, S Gray, M Duke
Treating wastewater from textile plants using membrane distillation (MD) has great potential due to the high-salinity wastes and availability of waste heat. However, textile wastewaters also contain surfactants, which compromise the essential hydrophobic feature of the membrane, causing membrane wetting. To address this wetting issue, a custom-made membrane consisting of a hydrophilic layer coated on hydrophobic polytetrafluoroethylene (PTFE) was tested on textile wastewater in a pilot MD setup, and compared with a conventional hydrophobic PTFE membrane. The test was carried out with a feed temperature of 60 °C, and a permeate temperature of 45 °C. The overall salt rejection of both membranes was very high, at 99%. However, the hydrophobic membrane showed rising permeate electrical conductivity, which was attributed to wetting of the membrane. Meanwhile, the hydrophilic-coated membrane showed continually declining electrical conductivity demonstrating an intact membrane that resisted wetting from the surfactants. Despite this positive result, the coated membrane did not survive a simple sodium hydroxide clean, which would be typically applied to a membrane process. This brief study showed the viability of membrane distillation membranes on real textile wastewaters containing surfactants using hydrophilic-coated hydrophobic PTFE, but the cleaning process required for membranes needs optimization.

History

Journal

Membranes

Volume

8

Article number

ARTN 31

Location

Switzerland

Open access

  • Yes

ISSN

2077-0375

eISSN

2077-0375

Language

English

Publication classification

C Journal article, C1.1 Refereed article in a scholarly journal

Copyright notice

2018, by the author

Issue

2

Publisher

MDPI