Deakin University
Browse

File(s) under permanent embargo

Membrane nanotubes in myeloid cells in the adult mouse cornea represent a novel mode of immune cell interaction

journal contribution
posted on 2013-01-01, 00:00 authored by Y Seyed-Razavi, M Hickey, L Kuffova, P McMenamin, Holly Chinnery
Membrane nanotubes (MNTs) are newly discovered cellular extensions that are either blind-ended or can connect widely separated cells. They have predominantly been investigated in cultured isolated cells, however, previously we were the first group to demonstrate the existence of these structures in vivo in intact mammalian tissues. We previously demonstrated the frequency of both cell–cell or bridging MNTs and blind-ended MNTs was greatest between major histocompatibility complex (MHC) class II+ cells during corneal injury or TLR ligand-mediated inflammation. The present study aimed to further explore the dynamics of MNT formation and their size, presence in another tissue, the dura mater, and response to stress factors and an active local viral infection of the murine cornea. Confocal live cell imaging of myeloid-derived cells in inflamed corneal explants from Cx3cr1GFP and CD11ceYFP transgenic mice revealed that MNTs form de novo at a rate of 15.5 μm/min. This observation contrasts with previous studies that demonstrated that in vitro these structures originate from cell–cell contacts. Conditions that promote formation of MNTs include inflammation in vivo and cell stress due to serum starvation ex vivo. Herpes simplex virus-1 infection did not cause a significant increase in MNT numbers in myeloid cells in the cornea above that observed in injury controls, confirming that corneal epithelium injury alone elicits MNT formation in vivo. These novel observations extend the currently limited understanding of MNTs in live mammalian tissues.

History

Journal

Immunology and cell biology

Volume

91

Issue

1

Pagination

89 - 95

Publisher

Nature Publishing Group

Location

London, England

ISSN

0818-9641

eISSN

1440-1711

Language

eng

Publication classification

C1 Refereed article in a scholarly journal

Copyright notice

2013, Nature Publishing Group