Deakin University
Browse

Meta-analyses of partial correlations are biased: Detection and solutions

Version 2 2024-06-20, 00:00
Version 1 2024-03-05, 05:38
journal contribution
posted on 2024-06-20, 00:00 authored by Tom StanleyTom Stanley, H Doucouliagos, T Havranek
AbstractWe demonstrate that all meta‐analyses of partial correlations are biased, and yet hundreds of meta‐analyses of partial correlation coefficients (PCCs) are conducted each year widely across economics, business, education, psychology, and medical research. To address these biases, we offer a new weighted average, UWLS+3. UWLS+3 is the unrestricted weighted least squares weighted average that makes an adjustment to the degrees of freedom that are used to calculate partial correlations and, by doing so, renders trivial any remaining meta‐analysis bias. Our simulations also reveal that these meta‐analysis biases are small‐sample biases (n < 200), and a simple correction factor of (n − 2)/(n − 1) greatly reduces these small‐sample biases along with Fisher's z. In many applications where primary studies typically have hundreds or more observations, partial correlations can be meta‐analyzed in standard ways with only negligible bias. However, in other fields in the social and the medical sciences that are dominated by small samples, these meta‐analysis biases are easily avoidable by our proposed methods.

History

Journal

Research Synthesis Methods

Volume

15

Pagination

313-325

Location

England

ISSN

1759-2879

eISSN

1759-2887

Language

English

Notes

In press

Publication classification

C1 Refereed article in a scholarly journal

Issue

2

Publisher

WILEY