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Abstract: Background: This narrative review presents the association between metabolic syndrome
(MetS), along with its components, and cognition-related disorders, as well as the potential reversal
role of diet against cognitive impairment by modulating MetS. Methods: An electronic research in
Medline (Pubmed) and Scopus was conducted. Results: MetS and cognitive decline share common
cardiometabolic pathways as MetS components can trigger cognitive impairment. On the other side,
the risk factors for both MetS and cognitive impairment can be reduced by optimizing the nutritional
intake. Clinical manifestations such as dyslipidemia, hypertension, diabetes and increased central
body adiposity are nutrition-related risk factors present during the prodromal period before cognitive
impairment. The Mediterranean dietary pattern stands among the most discussed predominantly
plant-based diets in relation to cardiometabolic disorders that may prevent dementia, Alzheimer’s
disease and other cognition-related disorders. In addition, accumulating evidence suggests that
the consumption of specific dietary food groups as a part of the overall diet can improve cognitive
outcomes, maybe due to their involvement in cardiometabolic paths. Conclusions: Early MetS
detection may be helpful to prevent or delay cognitive decline. Moreover, this review highlights
the importance of healthy nutritional habits to reverse such conditions and the urgency of early
lifestyle interventions.

Keywords: metabolic syndrome; dementia; cognitive impairment; cognition; nutrition; healthy aging

1. Introduction

Metabolic syndrome (MetS) refers to a cluster of metabolic disorders that increase
the risk of developing cardiometabolic disorders and mortality [1]. It is estimated that
20–25% of the global adult population have MetS with similar rates between genders
(men: 7–34%/women: 5–22%) [2–4]. Aging is one of the major contributors to the growing
prevalence of the constellation of cardiovascular and metabolic risk factors that constitute
MetS. The latest data from the Centers for Disease Control and Prevention (CDC) suggested
that the prevalence of prediabetes or MetS is three times higher in US seniors compared
with middle-aged adults [5], while the latest atlas generated by the International Diabetes
Federation revealed that one in five adults with type 2 diabetes mellitus (T2DM) are over
65 years old [6].

In the last decade, considerable evidence has indicated that cardiovascular and cere-
brovascular disease may share similar underlying mechanisms and risk factors [7]. In
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particular, chronic metabolic insult may lead to the development of atherosclerosis on
the cerebral small vessels, consequently resulting in white matter damage and cognitive
dysfunction. The concept of “vascular cognitive impairment”, such as the continuum of
cognitive deficits and dementia due to cerebrovascular disease, has been widely accepted
as an important cause of cognitive impairment [8]. Relatively recent investigations also
suggest that vascular risk factors may also contribute to the onset of sporadic Alzheimer’s
disease (AD) [8]. Therefore, beyond the direct aggravating role of MetS in the vascular
system, increasing the risk of major cardiovascular events and T2DM, there appears to be
an underlying pathophysiological association with neurodegenerative disorders.

Lifestyle modifications, especially dietary habits, are identified as the main therapeutic
strategy for the treatment and management of MetS [9]. Plant-based diets characterized by
frequent consumption of fruits and vegetables, pulses and legumes, whole-grain products,
high-quality protein and fat sourced from fish and seafood, as well as limited intake of
refined carbohydrates, sodium and saturated fatty acids, are highly encouraged as part
of a healthy dietary pattern [9]. The Mediterranean diet stands among the most well-
investigated dietary patterns in the prevention and management of MetS [10]. Similarly,
other food patterns with similar dietary compounds, such as dietary approaches to stop
hypertension (DASH) and traditional Japanese and Nordic diets, have been linked with
beneficial effects on diabetes, insulin sensitivity, blood pressure and lipid profile [11–13].

The MetS and conditions associated with cognitive decline share common cardiometabolic
pathways, as MetS components can trigger the development and progression of cognitive
impairment. Importantly, the risk factors for both MetS and cognitive impairment can be
reduced by optimizing nutrition [14]. The clinical manifestations, such as hypercholes-
terolemia, hypertension, T2DM and increased central body adiposity, are nutrition-related
risk factors that can be present during the prodromal period before cognitive impair-
ment [15]. Subclinical deficiencies in essential micronutrients, such as vitamin C, vitamin E
and β-carotene, as well as vitamin B12, B6 and folate, have been associated with progressive
cognitive decline [16]. Hence, dietary factors are considered a first-line strategy to prevent
or potentially delay cognitive decline.

As such, there is a need for data on the interplay between cardiometabolic risk and
nutrition in the development of cognitive impairment. Therefore, the aim of the present
narrative review was to present (a) the association between MetS, along with its compo-
nents, and cognition-related disorders, and (b) the potential reversal role of dietary factors
or patterns against cognitive impairment by modulating MetS (Figure 1).Nutrients 2022, 14, 333 3 of 22 
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2. Materials and Methods

An online search in Medline (i.e., Pubmed) and Scopus was conducted and papers that
matched with the following keywords were investigated so as to be included in this work:
metabolic syndrome, diabetes, dyslipidemia, hypertension, obesity, cognition, cognitive
impairment, nutrition, diet, food groups, nutrients, mechanisms and paths. Additionally,
the reference lists of the retrieved articles were also considered when these were relevant to
the issue examined in the present review but were not found through the basic searching
procedure. The search was restricted to studies conducted in humans and published
since the year 2000 in the English language so as to include the most recent data from the
literature investigating this issue and giving priority to meta-analyses, systematic reviews,
clinical trials and well-designed cohorts for more accurate and reliable results.

3. Results and Discussion
3.1. Cognitive Impairment and Metabolic Syndrome

Dementia is one of the major global health challenges, with almost 50 million peo-
ple currently living with a diagnosis, and by 2050, this number is expected to increase
to 131 million [17]. Dementia is an “umbrella” term that includes several different neu-
rodegenerative conditions, with AD being the most prevalent and contributing up to 70%
of all cases, followed by vascular dementia, which accounts for 15–20% of all cases [17].
Although the exact etiology of dementia is still unknown, several metabolic disturbances
(i.e., prediabetes, T2DM) have been associated with a modest increased risk of cognitive
dysfunction across all cognitive domains [18]. In a meta-analysis of longitudinal studies, a
non-significant pooled association between MetS and incident dementia and AD emerged,
and MetS was significantly associated with an increased risk of vascular dementia [19].
Although the mechanisms linking MetS with cognitive impairment are not well understood,
the current evidence indicates an increased dementia risk in people with T2DM, prediabetes
and MetS, with common characteristics between conditions including impaired glycemic
control, abnormal lipidemic profile and visceral adiposity [20]. All of these conditions are
encompassed under the umbrella of adiposity or obesity-induced cognitive impairment.
To date, several meta-analyses of observational studies (Table 1) examined the association
between MetS and its components with the onset or progression of cognitive disorders (i.e.,
mild cognitive impairment, all-cause dementia, vascular dementia, AD), indicating a clear
and representative relationship.

Table 1. Meta-analyses of epidemiological studies evaluating the association of metabolic syndrome
and its components with cognitive impairment.

First Author, Year Exposure Outcome Studies, N RR (95%CI)

Zuin, M., 2021 [20] Metabolic syndrome Alzheimer’s disease 6 1.10
(1.05, 1.15)

Zuin, M., 2021 [21] Hypertension Alzheimer’s disease 6 1.05
(1.04, 10.6)

Zuin, M., 2021 [21] Low HDL-C Alzheimer’s disease 6 1.07
(1.06, 1.07)

Zuin, M., 2021 [21] Hypertriglyceridemia Alzheimer’s disease 6 1.06
(1.05, 1.06)

Zuin, M., 2021 [21] Obesity in late life Alzheimer’s disease 6 0.84
(0.74, 0.95)

Yu, J. T., 2020 [22] Type II diabetes Alzheimer’s disease na 1.69
(1.51, 1.89)

Yu, J. T., 2020 [22] Hypertension Alzheimer’s disease na 1.38
(1.29, 1.47)

Xue, M., 2019 [23] Type II diabetes Global cognitive decline 20 1.25
(1.12, 1.39)

Xue, M., 2019 [23] Type II diabetes Executive function decline 10 1.44
(1.23, 1.69)
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Table 1. Cont.

First Author, Year Exposure Outcome Studies, N RR (95%CI)

Xue, M., 2019 [23] Type II diabetes Memory function impairment 10 1.27
(1.16, 1.39)

Xue, M., 2019 [23] Type II diabetes Mild cognitive impairment 9 1.49
(1.26, 1.77)

Xue, M., 2019 [23] Type II diabetes Dementia 31 1.43
(1.33, 1.53)

Xue, M., 2019 [23] Type II diabetes Alzheimer’s disease 24 1.43
(1.25, 1.62)

Xue, M., 2019 [23] Type II diabetes Vascular dementia 17 1.91
(1.61, 2.25)

Atti, A. R., 2019 [19] Metabolic syndrome Dementia 9
Atti, A. R., 2019 [19] Type II diabetes Dementia 19

Pal, K., 2018 [24] Metabolic syndrome Transition from mild cognitive
impairment to dementia 12 2.95

(1.23, 7.05)

Anstey, K. J., 2017 [25] Low high-density
lipoprotein cholesterol Mild cognitive impairment 2 0.97

(0.75, 1.27)

Anstey, K. J., 2017 [25] Low high-density
lipoprotein cholesterol Alzheimer’s disease 3 0.78

(0.54, 1.13)

Anstey, K. J., 2017 [25] Low high-density
lipoprotein cholesterol

Vascular
dementia 2 1.13

(0.60, 2.14)

Anstey, K. J., 2017 [25] Low high-density
lipoprotein cholesterol Dementia 2 1.06

(0.71, 1.56)

Anstey, K. J., 2017 [25] Hypertriglyceridemia Vascular
dementia 2 1.66

(0.68, 4.04)

Pal, K., 2018 [24] Type II diabetes Transition from mild cognitive
impairment to dementia 12 1.53

(1.20, 1.97)

Li, J. Q., 2016 [26] Hypertension Transition from mild cognitive
impairment to dementia 7 1.18

(1.10, 1.27)

Li, J. Q., 2016 [26] Type II diabetes Transition from mild cognitive
impairment to dementia 7 1.52

(1.20, 1.91)

Li, J. Q., 2016 [26] Hypercholesterolaemia Transition from mild cognitive
impairment to dementia 4 0.48

(0.13, 1.82)

Li, J. Q., 2016 [26] High body mass index in
late life

Transition from mild cognitive
impairment to dementia 4 0.85

(0.76, 0.96)

Pedditzi, E., 2016 [27] Obesity in midlife Dementia 7 1.41
(1.20, 1.65)

Pedditzi, E., 2016 [27] Obesity in late life Dementia 16 0.83
(0.74, 0.94)

Cooper, C., 2015 [28] Type II diabetes Transition from mild cognitive
impairment to dementia 7 1.65

(1.12, 2.43)

Cooper, C., 2015 [28] Hypertension Transition from mild cognitive
impairment to dementia 7 1.19

(0.81, 1.73)

Cheng, G., 2012 [29] Type II diabetes Alzheimer’s disease 16 1.46
(1.20, 1.77)

Cheng, G., 2012 [29] Type II diabetes Vascular dementia 10 2.49
(2.09, 2.97)

Cheng, G., 2012 [29] Type II diabetes Dementia 11 1.51
(1.31, 1.74)

Cheng, G., 2012 [29] Type II diabetes Mild cognitive impairment 2 1.12
(1.00, 1.45)

Profenno, L. A., 2010 [30] Obesity in midlife Alzheimer’s disease 6 1.59
(1.02, 2.48)

Profenno, L. A., 2010 [30] Type II diabetes Alzheimer’s disease 8 1.54
(1.33, 1.79)

Abbreviations: na, not available; RR, relative risk; 95%CI, 95% confidence interval.
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3.1.1. Adiposity and Cognitive Impairment

Accumulating evidence exists regarding the detrimental effect of adiposity on the
central nervous system, consequently resulting in cognitive impairment, including in the
domains of attention, executive function, decision making and verbal fluency [31]. In
particular, obesity almost doubles the risk of AD [22], while obesity in midlife predicts a
greater risk of all-cause dementia in later life [27]. Furthermore, visceral adiposity is also
associated with insulin resistance, which, in turn, reduces capillary reactivity and cerebral
blood flow, which is a marker of optimal neuronal activity [32]. In contrast, the extent to
which overweight and obesity are risk factors for incident dementia seems to differ between
midlife and later life [27], indicating a potential cascade of events related to the chronologi-
cal onset of obesity [33]. Nevertheless, one of the major problems is that overweight and
obese individuals at various life stages often live with other cardiometabolic co-morbidities
that are associated with an increased risk of developing dementia [27,34]. The primary
genetic risk factor for the development of late-onset AD, namely, apolipoprotein E (ApoE),
is also associated with an increased risk of developing MetS [35]. In addition, emerging
evidence indicates the importance of obesity-related systemic inflammation [36]. In partic-
ular, adipose tissue releases proinflammatory cytokines, such as interleukin-6 (IL-6), and
inflammation-related proteins, such as C-reactive protein (CRP), resulting in low-grade
systemic inflammation [36]. Moreover, inflammation may alter hypothalamic function, and
in turn, cognition and mood through dysregulation of the hypothalamic–pituitary–adrenal
(HPA) axis, influencing monoaminergic systems [37,38].

3.1.2. Diabetes, Insulin Resistance and Cognitive Impairment

The developed, and increasingly developing countries, are facing a diabetes epidemic,
with 90% of diabetic individuals experiencing T2DM in parallel with obesity [39]. Indeed,
obesity is strongly linked with metabolic inflammation and lipotoxicity, which are two key
mechanisms that can promote insulin resistance, the hallmark of T2DM [40]. Insulin resis-
tance and pancreatic β-cells failure are the drivers of the chronically elevated circulating
glucose levels that characterize T2DM. In particular, chronic hyperglycemia and insulin
resistance are at the basis of the complications of T2DM, which were thought to affect
only the periphery of the human body by promoting neuropathy, nephropathy and vessel
damage [41]. Nonetheless, T2DM also negatively impacts the central nervous system, as in-
dicated by its association with the onset and progression of neurodegenerative diseases [42].
In a relatively recent meta-analysis of prospective studies, moderate-to-high-quality evi-
dence demonstrated that T2DM and prediabetes were associated with an increased risk
of dementia and cognitive impairment, supporting the paradigm that hyperglycemia and
defective glycemic control are pivotal for brain and cognitive health [43]. In support of this,
abnormal fasting or impaired glucose tolerance, HbA1c and abnormal fasting insulin levels
are associated with a higher risk of dementia [23]. Furthermore, findings of the National
Health and Nutrition Examination Survey (NHANES) revealed that impaired glycemic
homeostasis, leading to elevated plasma glucose levels, is one of the components of MetS
that is more strongly associated with cognitive decline [20].

From a mechanistic perspective, the detrimental effects exerted by hyperglycemia
are strictly dependent on the neurotoxic effects elicited by high glucose levels [43]. The
brain makes up 2% of a human’s body weight, but despite this, 20% of the body’s glucose
requirement is used by the brain [44]. The high glucose demand of the brain is guaranteed
by a glucose uptake system independent of insulin. Indeed, the blood–brain barrier
(BBB) and neurons can take up glucose via GLUT-1 and GLUT-3 transporters, respectively,
which are both insulin-independent glucose transporters [45]. While glucose uptake via
mechanisms independent of insulin represents a clear advantage to fulfill the brain glucose
demand, it also makes neurons more susceptible to glucose neurotoxicity. However, the
BBB does not seem to prevent hyperglycemia from affecting the brain, as demonstrated by
the increase in glucose levels in the brain extracellular fluid of diabetic animals [46]. The
increase in interstitial glucose levels, in turn, promotes abnormally high levels of glucose
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into the neurons, thus triggering gluconeurotoxicity [46]. Glucose is also neurotoxic via
different mechanisms, including the polyol pathway, the formation of advanced glycation
end products (AGEs), oxidative stress and the activation of mitogen-activated protein kinase
(MAP) kinases, which were extensively reviewed elsewhere [47]. However, hyperglycemia
is not the only driver of cognitive impairment in the context of T2DM. In this regard,
insulin resistance has also been linked with the onset and progression of neurogenerative
diseases [48]. It cannot be overlooked that besides its metabolic role in the periphery, insulin
also acts in the central nervous system to regulate energy balance, glucose metabolism,
neuronal function, plasticity, learning and memory [49]. The importance of the role of
insulin in the brain is evidenced by the fact that it can enter the nervous system and
regulate its function in light of the broad expression of its cognate receptor throughout the
brain, which has been reported in the hypothalamus, as well as areas involved in memory
function, such as the hippocampus and the prefrontal cortex [50]. Furthermore, in order to
target the central nervous system, intranasal administration of insulin exerted beneficial
effects on cognitive function in healthy adults, as well as individuals affected by mild
cognitive impairment or AD [51]. Thus, in consideration of the fact that the role of insulin
in the central nervous system goes well beyond metabolic regulation, it is plausible that
defective insulin signaling and insulin resistance may represent a further mechanism that
bridges the gap between MetS and cognitive impairment.

Peripheral insulin resistance was associated with cognitive decline [52]. However,
insulin resistance is not limited to peripheral tissues, with impaired insulin signaling being
reported to affect the brain, as indicated by a decrease in protein kinase B phosphorylation
in a variety of animal and cell models of insulin resistance [53]. Insulin resistance may
represent a better predictor of memory impairment than elevated blood glucose, thereby
providing further support to the role of insulin resistance as a key mechanism driving
cognitive decline [54]. Thus, it appears clear that T2DM and AD share common features
regarding insulin resistance and impaired brain glucose metabolism, which has led some
investigators to refer to this neurodegeneration as type 3 diabetes [55]. Insulin resistance
promotes key pathogenetic features of AD, including increased phosphorylation of tau and
accumulation of amyloid β, which further support, also from a mechanistic perspective,
the impact of defective brain insulin signaling on cognitive impairment [53]. Further
support to the nexus between insulin resistance, hyperglycemia and cognitive impairment is
provided by the ApoE gene. Not only do ApoE ε4 carriers not respond to intranasal insulin
treatment, but this ApoE isoform also impairs cerebral glucose metabolism, assessed by
fluorodeoxyglucose positron emission tomography scan and insulin signaling in mice [56].

Thus, impaired glucose metabolism and homeostasis and insulin resistance are at the
forefront in linking MetS with cognitive disorders. In light of this, interventions to improve
insulin sensitivity and glucose metabolism are emerging and represent promising strategies
to improve cognitive function [57].

3.1.3. Hypertension and Cognitive Impairment

Effective screening and management of hypertension are identified as a Class I rec-
ommendation for preventing cognitive decline [22]. Elevated blood pressure, especially in
midlife, has been associated with the onset and development of dementia and cognitive
impairment later in life [58]. In a meta-analysis of prospective epidemiological studies,
moderate-quality evidence indicated that midlife hypertension was related to a 1.19-to-1.55-
fold excess risk of cognitive impairment [59]. Additionally, midlife systolic blood pressure
over 130 mmHg was associated with an increased risk of cognitive impairment [59]. In
another recent meta-analysis of twelve randomized controlled clinical trials, lowering blood
pressure with antihypertensive agents was significantly associated with a lower risk of
incident dementia or cognitive impairment [60]. Several mechanisms were suggested and
potentially grouped into three broad categories: action on the concurrent vascular pathol-
ogy, action on the vascular component of AD pathophysiology and action on non-vascular
targets [61]. Furthermore, these mechanisms can include targeting blood–brain barrier
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dysfunction, which contributes to amyloid-related cerebral angiopathies and reduced total
brain volumes, impaired cerebral blood flow and delivery of nutrients/oxygen into the
brain accompanied with significantly poorer cognitive performance [62].

3.1.4. Atherogenic Dyslipidemia and Cognitive Impairment

Low levels of HDL cholesterol (HDL-C) and hypertriglyceridemia are key components
of the development of MetS. Dyslipidemia contributes to the development of atheroscle-
rotic lesions, leading to microvascular dysfunction, which has been associated with worse
cognitive performance [63]. Many AD susceptibility loci, such as the APOE variant carriers
identified by genome-wide association studies, are also involved in lipid metabolism [64].
In a network analysis of lipoprotein profile and its association with cognitive impair-
ment, both increased triglycerides (TGs) and low HDL-C levels were associated with poor
self-rated cognitive performance [65]. The HDL-C and apolipoprotein A-I (ApoA-I) pro-
mote the efflux of excess cholesterol via cholesterol transporters, such as the ATP-binding
cassette transporter A1 which is involved in the pathogenesis of AD [66]. Interestingly,
increased ApoA-I was shown to be associated with a decreased risk of TD2M in males, but
not females, who are more likely to develop AD than males [67]. Thereby, disturbances
in the metabolism of HDL-C may influence cognition and neuronal growth and repair,
and mounting evidence indicates that HDL-C modulates cognitive function in aging and
age-related neurodegenerative disorders [63]. The STOP-Dementia cross-sectional study,
involving adults over 65 years diagnosed with AD or mild cognitive impairment, revealed
a strong relationship between the levels of small-sized HDL particles and mild cognitive
impairment [68]. Furthermore, the role of HDL in the cardiovascular systems has been
extensively studied and its cardioprotective roles are well established, where HDL particles
can be formed in the systemic circulation and the nervous system. Therefore, HDL particles
also play a crucial role in the potential targets for the development of small peptides mim-
icking the HDL as therapeutics for the treatment of AD [69]. Hypertriglyceridemia is also
linked with neurodegeneration, yet limited studies exist with non-significant results [25,70].
However, observational studies suggest increased TG levels in the serum of individuals
living with AD [71], in addition to being a shared risk factor between the development of
dementia and atherosclerotic CVD [72].

3.2. The Role of Diet on Cognitive Impairment
3.2.1. Mediterranean-Type Dietary Pattern

Adherence to the Mediterranean dietary pattern is inversely associated with the risk
of developing dementia and cognitive impairment [73]. Findings from large-scale cohort
studies and long-term intervention trials support the protective effect of this pattern against
several neurodegenerative disorders [74]. Among the largest prospective observational
studies are the Singapore Chinese Health Study (16,948 men and women followed for an
average of 20 years) [75], the European Prospective Investigation into Cancer and Nutrition
(EPIC-Norfolk, 8009 older individuals with an average of 13 years of follow-up) [76],
the EPIC-Spain study (16,169 adults followed for approximately 22 years) [77] and the
Coronary Artery Risk Development in Young Adults (CARDIA, with follow-up for up to
20 years) [78]. These studies found that higher adherence to a Mediterranean diet was
associated with a significantly lower risk of developing all-cause dementia, AD or mild
cognitive impairment.

Similar promising outcomes were also revealed by randomized controlled clinical
trials, such as the Mediterranean-DASH Diet Intervention for Neurodegenerative Delay
(MIND) study with a dietary intervention that highly overlapped with the typical Mediter-
ranean diet yet gave more focus to foods suggested as neuroprotective due to the inclusion
of nutrient-dense foods, such as green leafy vegetables and berries [79]. Additionally, a
sub-analysis from the Prevención con Dieta Mediterránea (PREDIMED) study (PREDIMED-
NAVARRA) showed an improvement in cognition in both Mediterranean diet groups
compared with the control, suggesting that even in individuals with established MetS and
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increased cardiometabolic risk, the protective effect of this dietary pattern still exists [80].
The PREDIMED-NAVARRA study also demonstrated better cognitive performance in
non-ApoE-ε4 carriers, but non-ApoE-ε4 carriers, in the clock drawing test following the
Mediterranean diet intervention [81]. Comprehensive meta-analyses have summarized
the results of observational and interventional studies on the associations between the
Mediterranean diet and cognitive impairment and concluded that dietary patterns like
the Mediterranean diet have protective effects (Table 2), suggesting that higher adherence
may be associated with a lower risk of mild cognitive impairment and AD. Another meta-
analysis revealed that the Mediterranean diet has a beneficial effect on global cognition in
older adults [82].

Table 2. Meta-analyses of epidemiological and/or intervention studies evaluating the role of the
Mediterranean diet and specific food groups on cognitive impairment.

First Author,
Year Exposure Outcome Studies,

N
Participants,

N
Cases,

N Comparison RR (95%CI)

Zhang, H.,
2020 [83] Total meat Cognitive disorders 5 na na At least weekly

intake vs. other
0.73

(0.57, 0.88)

Bakre, A. T.,
2018 [84] Fish Dementia 9 40,668 3139 High vs. low 0.80

(0.74, 0.87)

Mottaghi, T.,
2018 [85]

Fruits and
vegetables

Cognitive
impairment 6 17,537 na High vs. low 0.79

(0.67, 0.93)

Lee, J.,
2018 [86]

Milk and dairy
products

Cognitive
impairment/decline 3 5460 701 High vs. low 1.21

(0.81, 1.82)

Larsson, S. C.,
2018 [87] Coffee Dementia 4 16,473 2173 Per 1 cup/day 1.01

(0.96, 1.05)

Larsson, S. C.,
2018 [87] Coffee Alzheimer’s disease 4 308,441 5370 Per 1 cup/day 1.02

(0.96, 1.08)

Liu, X.,
2017 [88] Tea Alzheimer’s disease 3 5677 249 High vs. low 1.18

(0.84, 1.66)

Liu, X.,
2017 [88] Tea Cognitive decline 3 7842 1932 High vs. low 0.70

(0.57, 0.88)

Jiang, X.,
2017 [89]

Fruits and
vegetables

Cognitive
impairment and

dementia
9 31,104 4583 High vs. low 0.80

(0.71, 0.89)

Wu, L.,
2017 [90]

Mediterranean
diet score

Mild cognitive
impairment 5 24,274 2351 High vs. low 0.83

(0.74, 0.93)

Wu, L.,
2017 [90]

Mediterranean
diet score

Mild cognitive
impairment 5 11,101 1113 Per 1 point

increase
0.94

(0.91, 0.98)

Wu, L.,
2017 [90]

Mediterranean
diet score Alzheimer’s disease 4 4845 498 High vs. low 0.63

(0.48, 0.82)

Wu, L.,
2017 [90]

Mediterranean
diet score Alzheimer’s disease 4 4845 498 Per 1 point

increase
0.93

(0.88, 0.97)

Zhang, H.,
2016 [91] Fish Dementia 3 15,713 1124 Per 1

serving/week
0.95

(0.90, 1.00)

Zhang, H.,
2016 [91] Fish Alzheimer’s disease 3 16,528 969 Per 1

serving/week
0.88

(0.80, 0.97)

Wu, L.,
2016 [92] Milk Cognitive disorders 7 10,941 na High vs. low 0.72

(0.56, 0.93)

Wu, L.,
2016 [92] Milk Cognitive

impairment 5 10,941 na High vs. low 0.76
(0.50, 1.17)



Nutrients 2022, 14, 333 9 of 21

Table 2. Cont.

First Author,
Year Exposure Outcome Studies,

N
Participants,

N
Cases,

N Comparison RR (95%CI)

Wu, L.,
2016 [92] Milk Dementia 3 10,941 na High vs. low 0.70

(0.48, 1.02)

Wu, L.,
2016 [92] Milk Alzheimer’s disease 2 10,941 na High vs. low 0.63

(0.44, 0.90)

Cao, L.,
2016 [93]

Mediterranean
diet score Dementia 3 10,941 na High vs. low 0.69

(0.57, 0.84)

Psaltopoulou,
T., 2013 [94]

Mediterranean
diet score

Cognitive
impairment 7 8291 1278 High vs. low 0.60

(0.43–0.83)

Sofi, F.,
2010 [95]

Mediterranean
diet score

Neurodegenerative
disorders 4 133,626 na Per 2 point

increase
0.87

(0.81, 0.94)

Sofi, F.,
2008 [96]

Mediterranean
diet score

Alzheimer’s and
Parkinson’s disease 2 133,626 783 Per 2 point

increase
0.87

(0.80, 0.96)

Abbreviations: na, not available; RR, relative risk; 95%CI, 95% confidence interval.

Several mechanistic studies suggested that the Mediterranean diet prevents telomere
shortening, which is associated with a reduced risk of many age-related diseases, including
cognitive impairment [97]. Other studies suggest that increased adherence is inversely
associated with various AD biomarkers [98] and positively affects brain morphology and
function [99]. In addition, there are several meta-analyses that document the role of the
Mediterranean diet in controlling MetS and its components [100–103], which in turn could
have a preventive effect against cognition-related disorders.

3.2.2. Food Groups and Cognition

Although the overall diet can profoundly affect the brain, accumulating evidence
suggests that consumption of specific dietary food groups as a part of the overall diet can
improve cognitive outcomes. Therefore, several foods, food groups and beverages have
been examined regarding their protective effects on cognitive impairment (Table 2).

Fruits and Vegetables

In a Greek sub-analysis of the EPIC study, among the components of the Mediter-
ranean diet, only vegetables exhibited a significant inverse association with cognitive
decline [104]. It was established that fruits and vegetables are high in various vitamins,
such as folate, and there is a strong association between high folate consumption and cog-
nitive performance [105]. Furthermore, fruits, including citrus fruits and berries and green
leafy vegetables, are rich in polyphenols, which favorably impact cognitive well-being [106].
Polyphenols, a diverse group of secondary plant metabolites, seem to exert many neu-
rocognitive benefits related to increased cerebral blood flow, reduced oxidative stress and
neuroinflammation, improved neurogenesis and neuroplasticity [107,108]. Relatively re-
cent meta-analyses support the neuroprotective properties of fruits and vegetables and also
propose several beneficial properties, mainly due to the action of polyphenols [85,89]. A
dose–response analysis revealed that an increment of 100 g per day of fruit and vegetable
consumption resulted in a significant reduction in cognitive impairment and dementia
risk of around 13% [89]. Simultaneously, fruits and vegetables were discussed for their
preventive effects against MetS and its components in terms of their protection against
cognition-related disorders [109].

Grains

Epidemiological studies that examined the separate role of whole grains on cognitive
impairment are limited; however, the hypothesis for their neuroprotective effects may be
due to their high phytochemical content [106]. This hypothesis was recently supported via a
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posteriori defined dietary patterns in the context of large-scale cohort studies. A prospective
analysis from the China Health and Nutrition Survey revealed that a “multigrain rice” food
pattern—consisting of brown rice, millets, black rice and barley—significantly reduced
the risk of cognitive impairment in older Asian people compared with a food pattern
characterized by white rice and noodles [110]. Similarly, the Whitehall II prospective cohort
study found that a dietary pattern with low consumption of whole grains was associated
with higher IL-6 levels, which were associated with accelerated cognitive decline at older
ages [111].

Furthermore, the importance of high fiber intake in one’s diet, commonly characterized
by a high intake of several whole grains, is well established as a key factor in beneficial
cardiometabolic and gastrointestinal health. This is predominately due to the action of
specific bacteria in the gut on the production of several metabolites, such as short-chain fatty
acids [112], that may influence the beneficial health patterns observed in the microbiota-
gut-brain axis. Although there is an increased connection between dietary fiber on overall
mental health, only relatively few studies have explored the connection between dietary
fiber and cognition, with mixed results [113].

Animal and Plant-Based Protein Foods

Fish is the primary dietary source of n-3 polyunsaturated fatty acids, which include
docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA). Previous studies have
suggested the beneficial effect of fatty fish consumption and its constituent n-3 fatty acids on
brain functioning and neurocognitive development may be through its anti-inflammatory
effects, blood pressure reduction and endothelial function enhancement [114]. Additionally,
the preventive role of fish against MetS may also imply another mechanism through which
this food group prevents cognition-related disorders [115].

Limiting the consumption of meat, particularly highly processed meats, remains a
common component of healthy dietary patterns. However, meat and meat products are
food sources of essential trace elements zinc and iron in the human diet. Dietary zinc [116]
and iron intake [117] have beneficial effects on brain function, playing an essential role in
learning and memory. A relatively recent study that analyzed data from the UK Biobank
revealed that only processed meat might be a risk factor for dementia. Interestingly, a
50 g/day increment in unprocessed red meat intake was associated with 19% and 30% lower
risk of all-cause dementia and AD, respectively [118]. Similarly, a recent meta-analysis of
observational studies suggested that red meat (processed and unprocessed) consumption
was associated with a higher risk of MetS which implied that this may be an internal
mechanism through which lower red meat intake may protect against cognition-related
disorders [83].

Eggs have a significant amount of vitamins A, B6, B12, riboflavin, folic acid, choline
and iron, all of which may benefit brain function [119]. Limited studies examined the role
of eggs in the prevention of cognitive impairment. A case–control study in China suggested
that increasing egg intake was associated with a lower likelihood of cognitive impairment,
yet the observed odds were not clinically relevant [119]. Another cross-sectional analysis
with a similar study sample revealed no significant association of eggs with mild cognitive
impairment [120]. Similarly, recent results from the Health and Retirement Study and the
Health Care and Nutrition study highlighted that although bivariate analyses show that
moderate egg consumers displayed a better cognitive performance at baseline assessment,
egg consumption was not associated with cognitive performance when adjusting models
for covariates known to have a robust association with cognition [121].

Legumes and soy foods are other polyphenol-rich protein foods suggested for their
potential neuroprotective properties [106]. A recent analysis from the NHANES study
suggested that increased dietary protein intake from legumes was associated with better
cognitive function in adults aged 60 years and older [122]. Even if findings regarding soy
foods remain inconclusive, it seems that they may have protective effects. Soy isoflavones
are phytoestrogens, which are thought to benefit cognition function through their estrogen-
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like activity [123]. The results of a recent meta-analysis showed that soy isoflavones
may improve cognitive function in adults; however, of the 1386 participants included in
the analysis, 1252 were women [123]. In contrast, several observational studies, such as
the Honolulu–Asia Aging Study [124] and a study from China [125], revealed that tofu
(extracted from soybeans) was associated with poorer cognitive performance. However,
these studies have many methodological limitations, such as their observational nature.

Finally, nuts have an optimal fatty acid profile, with a high concentration of monoun-
saturated and polyunsaturated fatty acids, and can be a good source of n-3 fatty acids
(i.e., walnuts), antioxidants and anti-inflammatory compounds [126]. Results from a com-
prehensive systematic review revealed that no consistent evidence exists to support the
view that the regular consumption of nuts has a protective effect on cognition in adults of
various ages; however, there were some indications that the intake of walnuts specifically
may be associated with better cognitive performance in young, middle-aged and older
people [126].

Milk and Dairy Products

Many dietary guidelines recommend milk and dairy products for meeting the daily
calcium, protein and vitamin B12 intake requirements, as these are important for maintain-
ing optimal health in older people. A meta-analysis that examined the potential relationship
between milk consumption (with or without other dairy products) and cognitive function
showed that the highest level of milk intake, compared with the lowest intake level (as
defined by the original studies), was significantly associated with a lower risk of cognitive
impairment [92]. However, a more recent meta-analysis showed no significant association
between milk intake and cognitive decline in older individuals, underscoring that it is
premature to draw a firm conclusion [127,128]. An analysis from the NHANES study
revealed that dietary protein from milk and milk-derived products may negatively affect
cognitive function in older people consuming in the highest quartile compared to the
lowest [122]. Similarly, results from the prospective Atherosclerosis Risk in Communi-
ties (ARIC) study [129] and the Supplémentation en Vitamines et Minéraux Antioxidants
(SU.VI.MAX) study [130] revealed that greater milk intake may be associated with a greater
rate of cognitive decline or lower verbal memory performance over 20 years. Another
matter that is highly discussed is the fact that not all dairy products are the same. Regarding
this issue, there is the hypothesis that fermented dairy products may have a protective role
on cognitive function, probably due to their high content in probiotics and interaction with
the gut-brain axis [131].

Oils

The latest meta-analysis on dietary fatty acids and the AD risk revealed only a modest
preventive potential of n-3 fatty acids against mild cognitive impairment [132]. However,
there are positive results regarding the potential neuroprotective role of extra virgin olive
oil polyphenols [133,134] and carotenoids in vegetable oils [135].

Coffee and Tea

Coffee is the primary source of caffeine in most populations and contains phenolics
and other bioactive compounds with potential beneficial or adverse effects on health. Ex-
perimental evidence indicates that caffeinated coffee and caffeine, which readily crosses
the blood–brain barrier, may influence the processes associated with AD, suppressing
brain amyloid-β production, causing microglia activation, reducing hippocampal pro-
inflammatory cytokines, protecting against any dysfunction in the blood–brain barrier
and preventing cognitive impairment; however, epidemiological data cannot support a
cause and effect relationship [87,136]. In a meta-analysis of observational studies, caffeine
intake from coffee and tea was also demonstrated to not be associated with cognitive
disorders [137]. However, in an analysis of three large prospective cohort studies, both
caffeinated and decaffeinated coffee consumption were inversely associated with deaths
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attributed to CVD and neurological disorders [138]. This finding is supported by the
evidence on other phytochemicals found in coffee (excluding the caffeine), such as chloro-
genic and caffeic acids, as well as trigonelline, kahweol and cafestol, that might provide
neuroprotective effects [139].

Another hypothesis that was tested is that tea consumption may improve mental
performance and reduce the progression of cognitive decline. Several studies observed the
association between the consumption of tea and lower cognitive impairment rates [140].
These findings were proposed to be due to tea’s antioxidative and anti-inflammatory effects
and its components, such as catechins and theanine, that might contribute to the neuropro-
tection [141,142]. However, the strength of the association between tea consumption and
the risk of cognitive impairment remains uncertain and, in some cases, provides little sup-
port for the regular consumption of tea (and coffee) in improving cognitive function [143].
This can also be due to the differences in participants, methodological methods used in the
current evidence base, quality and type of tea consumed and the extent of tea consumption
on modulating the effects on gut microbiota [144].

3.3. Nutrients and Phytochemicals on Cognition

Various micronutrients—primarily folate; vitamins B9, B12 and E; n-3 polyunsaturated
fatty acids; as well as non-nutrient phytochemicals—were suggested to improve adult neu-
rogenesis, principally due to their antioxidant and anti-inflammatory properties [145]. Folic
acid or folate (vitamin B9) is necessary as a regulator for the development of the central ner-
vous system. In vivo studies have shown that vitamin B9, along with vitamins B6 and B12,
plays a critical role in DNA methylation, which is an epigenetic phenomenon in the central
nervous system that is critical for the maintenance of adult neurogenesis [146]. Further-
more, all three vitamins play a crucial role in the regulation of homocysteine (Hcy), which
was also identified as an independent risk factor for the development of CVD. Additionally,
elevated Hcy levels have also been associated with a decline in memory, mild cognitive
impairment, several different dementias (including the AD) and psychobehavioral and
functional complications [147]. Furthermore, supplementation with folic acid was shown
to slow cognitive decline in people with mild cognitive impairment. It appears that the
type of folic acid provided in supplements plays an important role in the responses against
inflammatory markers [146]. Adequate serum levels of vitamin B12 are well established in
playing a major role in proper brain development and cognitive function [146]. Dietary B
vitamins also appear to play a key role in AD independently of the ApoE ε4 genotype [148].
Many clinical studies indicated that abnormal vitamin B12 status in the serum is strongly
correlated with cognitive impairment and brain atrophy [149], and supplementation with
vitamin B12 showed the capacity to reduce the rate of brain atrophy in those diagnosed
with MCI [150]. Supplementation with B-vitamins was suggested to prevent cognitive
decline, principally through reducing the levels of Hcy, which is a neurotoxic chemical and
a risk factor for AD [151]; however, the evidence remains contradictory [152].

Preclinical studies showed that vitamin E can regulate adult neurogenesis due to its
antioxidant and anti-inflammatory properties [153]. Nevertheless, in a meta-analysis of
randomized clinical trials, the alpha-tocopherol form of vitamin E given to people with
MCI did not prevent progression to dementia or improve cognitive performance [153].
However, moderate-quality evidence from a single study showed that alpha-tocopherol
may slow functional decline in AD [153]. A more recent meta-analysis (total n = 14,262)
produced inconclusive results due to high heterogeneity in the measure of progression to
AD [154]. The role of n-3 polyunsaturated fatty acids on cognition was extensively studied.
Supplementation trials suggested that their effects on cognition may be beneficial only in
certain compromised populations (i.e., with habitual diets low in DHA, ApoE genotype)
and not in healthy older people [145,155]. However, results from randomized controlled
trials do not support supplementation of n-3 fatty acids in the prevention of cognitive
decline [156].
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Several observational studies also demonstrated that polyphenol-enriched diets are
associated with a reduced risk of cognitive decline [157,158]. This activity was associated
with anti-inflammatory properties and via mechanisms such as the modulation of lipid
metabolism and gut microbiota function. However, long-term studies on humans had
mixed results [159]. For instance, a recent meta-analysis showed that resveratrol has no
significant effect on memory and cognitive performance in older people [160]. However,
another meta-analysis with young and middle-aged participants provided promising
findings regarding the usefulness of polyphenol-rich interventions as an inexpensive
approach for enhancing circulation of pro-cognitive neurotrophic factors with beneficial
effects appearing to depend on the supplementation protocols [107].

These nutrients may influence cognitive function through numerous mechanistic
pathways that impact several symptoms associated with MetS. As such, a number of these
nutrients, such as vitamin B9 [161], vitamin B12 [162], vitamin E [163], n-3 fatty acids and
polyphenols [164], demonstrated the ability to reduce blood pressure, decrease insulin
resistance and reduce blood sugar levels, as well as lower circulating TG levels.

3.4. The Gut-Brain Axis and the Role of Dietary Interventions

Emerging experimental and clinical evidence has demonstrated the close interconnec-
tion between the gastrointestinal tract and the brain, known as the gut-brain axis [165]. The
latest research advances described the importance of gut microbiota in influencing these
interactions, namely, through bidirectional signaling to the brain through neural, endocrine,
immune and humoral links [166,167]. Hence, clinical and experimental evidence suggests
that enteric microbiota has an important impact on the central nervous system through
neuroendocrine and metabolic pathways, increasing the risk of dementia and Alzheimer’s
disease [168].

Probiotics are live microbes with health benefits when received in adequate amounts,
plausibly through their anti-inflammatory or anti-oxidative properties. Probiotics may
influence the central nervous system and ameliorate age-associated cognitive deficits [169].
A recent meta-analysis of six clinical trials indicated that probiotics improved cognitive
performance in individuals living with AD and MCI [170]. Another meta-analysis that
investigated the effects of probiotics, prebiotics and fermented food interventions found
no significant improvement in cognitive outcomes, suggesting that further studies are
required [165]. Hence current evidence is insufficient, and more reliable evidence from
large-scale randomized controlled clinical trials is needed.

Gut dysbiosis, characterized as a disruption to the microbiota homeostasis caused
by an imbalance in the microflora, has been associated with various metabolic syndrome
symptoms, particularly obesity, hyperglycemia and hypertension [171]. Conversely, probi-
otic microbes, capable of stimulating gut supporting metabolites, namely, short-chain fatty
acids, have been linked with reduced over-eating and obesity, reduced risk of diabetes, hy-
pertension and elevated cholesterol [172]. Based on these findings, interventions targeting
the gut may also produce promising results in alleviating the symptoms associated with
MetS and, therefore, improve cognition.

4. Conclusions

The present narrative review summarized the recent literature on the association be-
tween MetS and its components on cognition and neurodegenerative disorders. This review
highlights the importance of healthy nutritional habits to reverse such conditions and the
urgency of early lifestyle interventions. Recognizing and reducing MetS components may
be helpful to prevent or delay cognitive decline.

Further studies are needed to determine whether the early detection of and inter-
ventions for MetS can prevent or delay cognitive decline. Future research should focus
on populations with increased risk of cognitive decline (e.g., people with MCI or ApoE
ε4 genotype) and modifiable risk factors, such as their dietary habits. Focus should also
be oriented toward populations of lower socioeconomic status. In addition, the current
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and future effects of the COVID-19 pandemic and its impact on overall and psychosocial
health will require investigation. Up to 50% of people who have died from COVID-19
have had metabolic and vascular co-morbidities [173]. Further, people who have been
hospitalized for COVID-19 are more likely to experience cognitive impairments, which is
currently considered to be a “long COVID” symptom [174]. Therefore, consideration of
COVID-19 infection should be considered from now on to evaluate these interactions and
suggest tailor-made prevention and treatment strategies to preserve cognitive function and
treat MetS.
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