Deakin University
Browse

File(s) under permanent embargo

Metformin, beta-cell development, and novel processes following beta-cell ablation in zebrafish

Version 2 2024-06-04, 05:49
Version 1 2018-05-30, 17:40
journal contribution
posted on 2024-06-04, 05:49 authored by G Wyett, Y Gibert, Megan EllisMegan Ellis, HA Castillo, Jan Kaslin, Kathryn Aston-MourneyKathryn Aston-Mourney
PURPOSE: Type 1 and 2 diabetes are characterized by a loss of insulin-producing beta-cells. Current treatments help maintain blood glucose levels but cannot provide a cure. As such, a vital target for the cure of diabetes is a way to restore beta-cell mass. The drug metformin can protect cultured beta-cells/islets from hyperglycemia-induced dysfunction and death. Further, treatment of pregnant mice with metformin results in an enhanced beta-cell fraction in the embryos; however, whether this occurs via a direct effect is unknown. METHODS: We utilized the external embryogenesis of the zebrafish to determine the direct effect of metformin treatment on the pancreas of the developing embryo and following beta-cell ablation. RESULTS: During development metformin did not alter beta-cell or alpha-cell mass but had a small effect to increase delta-cell mass as measured by in situ hybridization. Further metformin significantly increased beta-cell number. Following beta-cell ablation, both glucagon and somatostatin expression were upregulated (>2-fold). Additionally, while metformin showed no effect to alter beta-cell mass or number, somatostatin expression was further increased (>5-fold). CONCLUSIONS: We showed that direct exposure to metformin during embryogenesis does not increase insulin-expressing area but does increase beta-cell number. Further, we identified novel consequences of beta-cell ablation to alter the expression of other pancreatic hormones that were enhanced by metformin. Therefore, this study provides a greater understanding of the beta-cell development/regenerative processes and the effect of metformin, bringing us closer to identifying how to increase beta-cells in humans.

History

Journal

Endocrine

Volume

59

Pagination

419-425

Location

United States

ISSN

1355-008X

eISSN

1559-0100

Language

English

Publication classification

C Journal article, C1.1 Refereed article in a scholarly journal

Copyright notice

2017, Springer Science+Business Media

Issue

2

Publisher

SPRINGER