For a given sheet metal forming process, an accurate determination of the contact pressure distribution experienced is an essential step towards the estimation of tool life. This investigation utilizes finite element (FE) analysis to determine the evolution and distribution of contact pressure over the die radius, throughout the duration of a channel forming process. It was found that a typical two-peak steady-state contact pressure response exists for the majority of the process. However, this was preceded by a transient response, which produced extremely large and localized contact pressures. Notably, it was found that the peak transient contact pressure was more than double the steady-state peak. These contact pressure results may have a significant influence on the tool wear response and therefore impact current wear testing and prediction techniques. Hence, an investigation into the validity of the predicted contact pressure was conducted.