Deakin University
Browse

Modeling turbulent reacting jets issuing into a hot and diluted coflow

Version 2 2024-06-13, 12:23
Version 1 2018-08-16, 15:04
journal contribution
posted on 2024-06-13, 12:23 authored by FC Christo, BB Dally
Numerical modeling of turbulent nonpremixed methane/hydrogen (1/1 by volume) flames issuing from a jet in hot coflow (JHC) is presented. The JHC burner is designed to emulate a moderate and intense low oxygen dilution (MILD) combustion regime. This study is focused on assessing the performance of various turbulence, combustion, and chemical kinetic models in predicting the JHC flames. A comparison between the modeling and experimental data is presented for three flames with different oxygen levels in the hot coflow (oxygen mass fractions of 9, 6, and 3%). Out of three variants, the k-ε turbulence model (standard, renormalization group, and realizable k-ε models), the standard model with a modified dissipation equation constant (Cε1), provided the best agreement with the experiment. Differential diffusion effects are found to have a strong influence on the accuracy of the predictions and therefore should always be accounted for. It was also found that conserved scalar-based models, i.e., the ξ/PDF and flamelet models, are inadequate for modeling JHC flames. The representation of the chemistry in the model was also found to play an important role in accurately predicting flame characteristics. Using detailed chemical kinetics, rather than global or skeletal mechanisms, with the eddy-dissipation concept (EDC) solver was found to improve the accuracy significantly. In general, the EDC model performed reasonably well for the 9% O2 and 6% O2 flames, but not for the 3% O2 case. For the 3% O2 case, the model overpredicted the flame liftoff height. At the 120-mm axial location, the model did not perform well due to the intermittent localized flame extinction. However, overall the EDC model with a detailed kinetic scheme, offers a practical and reasonably accurate tool for predicting the flow and flame characteristics of JHC configurations. © 2005 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

History

Journal

Combustion and Flame

Volume

142

Article number

1-2

Pagination

117-129

Location

Amsterdam, The Netherlands

Notes

Cited By :189 Export Date: 20 August 2018 Numerical modeling of turbulent nonpremixed methane/hydrogen (1/1 by volume) flames issuing from a jet in hot coflow (JHC) is presented. The JHC burner is designed to emulate a moderate and intense low oxygen dilution (MILD) combustion regime. This study is focused on assessing the performance of various turbulence, combustion, and chemical kinetic models in predicting the JHC flames. A comparison between the modeling and experimental data is presented for three flames with different oxygen levels in the hot coflow (oxygen mass fractions of 9, 6, and 3%). Out of three variants, the k-ε turbulence model (standard, renormalization group, and realizable k-ε models), the standard model with a modified dissipation equation constant (Cε1), provided the best agreement with the experiment. Differential diffusion effects are found to have a strong influence on the accuracy of the predictions and therefore should always be accounted for. It was also found that conserved scalar-based models, i.e., the ξ/PDF and flamelet models, are inadequate for modeling JHC flames. The representation of the chemistry in the model was also found to play an important role in accurately predicting flame characteristics. Using detailed chemical kinetics, rather than global or skeletal mechanisms, with the eddy-dissipation concept (EDC) solver was found to improve the accuracy significantly. In general, the EDC model performed reasonably well for the 9% O2 and 6% O2 flames, but not for the 3% O2 case. For the 3% O2 case, the model overpredicted the flame liftoff height. At the 120-mm axial location, the model did not perform well due to the intermittent localized flame extinction. However, overall the EDC model with a detailed kinetic scheme, offers a practical and reasonably accurate tool for predicting the flow and flame characteristics of JHC configurations. © 2005 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

Publication classification

C1.1 Refereed article in a scholarly journal

Issue

1-2

Publisher

Elsevier

Usage metrics

    Research Publications

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC