Deakin University
Browse
DOCUMENT
abawajy-multilayerattribute-2015.pdf (202.76 kB)
DOCUMENT
abawajy-multilayerattribute-evid-2015.pdf (255.1 kB)
1/0
2 files

Multi-layer attribute selection and classification algorithm for the diagnosis of cardiac autonomic neuropathy based on HRV attributes

Version 2 2024-06-03, 11:55
Version 1 2016-07-04, 14:51
journal contribution
posted on 2024-06-03, 11:55 authored by HF Jelinek, Jemal AbawajyJemal Abawajy, JD Cornforth, A Kowalczyk, M Negnevitsky, Morshed ChowdhuryMorshed Chowdhury, R Krones, AV Kelarev
Cardiac autonomic neuropathy (CAN) poses an important clinical problem, which often remains undetected due difficulty of conducting the current tests and their lack of sensitivity. CAN has been associated with growth in the risk of unexpected death in cardiac patients with diabetes mellitus. Heart rate variability (HRV) attributes have been actively investigated, since they are important for diagnostics in diabetes, Parkinson's disease, cardiac and renal disease. Due to the adverse effects of CAN it is important to obtain a robust and highly accurate diagnostic tool for identification of early CAN, when treatment has the best outcome. Use of HRV attributes to enhance the effectiveness of diagnosis of CAN progression may provide such a tool. In the present paper we propose a new machine learning algorithm, the Multi-Layer Attribute Selection and Classification (MLASC), for the diagnosis of CAN progression based on HRV attributes. It incorporates our new automated attribute selection procedure, Double Wrapper Subset Evaluator with Particle Swarm Optimization (DWSE-PSO). We present the results of experiments, which compare MLASC with other simpler versions and counterpart methods. The experiments used our large and well-known diabetes complications database. The results of experiments demonstrate that MLASC has significantly outperformed other simpler techniques.

History

Journal

AIMS medical science

Volume

2

Pagination

396-409

Location

Springfield, Mo.

Open access

  • Yes

eISSN

2375-1576

Language

eng

Publication classification

C Journal article, C1 Refereed article in a scholarly journal

Copyright notice

2015, AIMS Press

Issue

4

Publisher

AIMS Press