Deakin University
Browse

File(s) under permanent embargo

Muscle metabolism during exercise and heat stress in trained men: effect of acclimation

Version 2 2024-06-03, 09:01
Version 1 2017-05-11, 13:58
journal contribution
posted on 2024-06-03, 09:01 authored by MA Febbraio, Rod SnowRod Snow, M Hargreaves, CG Stathis, IK Martin, MF Carey
Exercise metabolism was examined in 13 endurance athletes who exercised on three occasions for 40 min at 70% of maximal O2 uptake in an environmental chamber at either 20 degrees C and 20% relative humidity (RTT) or 40 degrees C and 20% relative humidity before (PRE ACC) or after (POST ACC) 7 days of acclimation. Exercise in the heat resulted in a lower (P < 0.05) mean O2 uptake (0.13 l/min) and higher (P < 0.01) heart rate and respiratory exchange ratio. Acclimation resulted in a lower (P < 0.01) mean heart rate and respiratory exchange ratio. Postexercise rectal temperature, muscle temperature, muscle and blood lactate, and blood glucose were higher (P < 0.01) in the PRE ACC than in the RTT trial, but all were reduced (P < 0.01) in the POST ACC compared with the PRE ACC trial. Muscle glycogenolysis and percentage of type I muscle fibers showing glycogen depletion were greater (P < 0.05) in the PRE ACC than in the RTT trial. Muscle glycogenolysis was unaffected by acclimation during exercise in the heat, although the percentage of depleted type I fibers was higher (P < 0.05) in the unacclimated state. Plasma epinephrine was higher (P < 0.01) during exercise in the heat in the unacclimated individual relative to RTT but was lower (P < 0.01) in the POST ACC than in the PRE ACC trial. The greater reliance on carbohydrate as a fuel source during exercise in the heat appears to be partially reduced after acclimation. These alterations are consistent with the observed changes in plasma epinephrine concentrations.

History

Journal

Journal of Applied Physiology

Volume

76

Pagination

589-597

Location

Bethesda, Md.

ISSN

8750-7587

eISSN

1522-1601

Language

eng

Publication classification

C1.1 Refereed article in a scholarly journal

Copyright notice

1994, American Physiological Society

Issue

2

Publisher

American Physiological Society