Deakin University
Browse

File(s) under permanent embargo

Nanoengineering of a biocompatible organogel by thermal processing

journal contribution
posted on 2009-03-23, 00:00 authored by Jingliang LiJingliang Li, R Y Wang, X Y Liu, H H Pan
The formation of most organogels requires the compatibility of both the gelator and solvent. It is very desirable if the rheological properties of a gel can be manipulated to achieve the desired performance. In this paper, a novel organogel was developed and its rheological properties and fiber network were engineered by controlling the thermal processing conditions. The gel was formed by the gelation of 12-hydroxystearic acid as a gelator in benzyl benzoate. It was observed that the degree of supercooling for gel formation has a significant effect on the rheological properties and fiber network structure. By increasing supercooling, the elasticity of the gel was enhanced, and the correlation length of the fibers was shortened, leading to the formation of denser fiber networks. The good biocompatibility of both the gelator and solvent makes this gel a promising vehicle for a variety of bioapplications such as controlled transdermal drug release and in vivo tissue repair.

History

Journal

The journal of physical chemistry b

Volume

113

Issue

15

Pagination

5011 - 5015

Publisher

American Chemical Society

Location

Washington, D.C.

ISSN

1520-6106

eISSN

1520-5207

Language

eng

Publication classification

C1.1 Refereed article in a scholarly journal

Copyright notice

2009, American Chemical Society