Deakin University
Browse

File(s) under permanent embargo

New effective catalysts based on mesoporous nanofibrous carbon for selective oxidation of hydrogen sulfide

journal contribution
posted on 2009-01-01, 00:00 authored by V Shinkarev, Alexey Glushenkov, D Kuvshinov, G Kuvshinov
The systems based on granular mesoporous nanofibrous carbonaceous (NFC) materials synthesized by decomposition of hydrocarbons over nickel- containing catalysts are promising catalysts for selective oxidation of hydrogen sulfide. Sample series of nanofibrous carbon with three main types of their fiber structures and different contents of metal catalysts inherited from the catalysts for their synthesis were studied in this reaction. The correlation between NFC structure and its activity and selectivity in hydrogen sulfide oxidation was determined. The metal inherited from the initial catalysts for the synthesis of NFC influences the activity and selectivity of the resulting carbon catalysts. A particular influence is observed in the case of the catalyst withdrawn from the synthesis reactor at the stage of stationary operation of the metal catalyst (low specific carbon yields per unit weight of the catalyst). The presence of the metal phase results in an increase in the carbon catalyst activity and in a decrease in the selectivity to sulfur. NFC samples with the highest activity and selectivity are nanotubes and those with graphite planes perpendicular to the axis of the fibers. Carbon nanotubes have high selectivity, while samples obtained on copper–nickel catalysts also possess high activity. The promising NFC catalysts provide high conversion and selectivity (almost independent of the molar oxygen/hydrogen sulfide ratio) when a large excess of oxygen is contained in the reaction mixture.

History

Journal

Applied catalysis B : environmental

Volume

85

Issue

3-4

Pagination

180 - 191

Publisher

Elsevier BV

Location

Amsterdam, The Netherlands

ISSN

1873-3883

eISSN

1873-3883

Language

eng

Publication classification

C1.1 Refereed article in a scholarly journal

Copyright notice

2008, Elsevier

Usage metrics

    Research Publications

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC