Deakin University
Browse

File(s) under permanent embargo

Nonlinear dynamic modeling of ionic polymer conductive network composite actuators using rigid finite element method

journal contribution
posted on 2014-09-15, 00:00 authored by Amir Moghadam, W Hong, Abbas KouzaniAbbas Kouzani, Akif KaynakAkif Kaynak, R Zamani, R Montazami
Ionic polymer conductive network composite (IPCNC) actuators are a class of electroactive polymer composites that exhibit some interesting electromechanical characteristics such as low voltage actuation, large displacements, and benefit from low density and elastic modulus. Thus, these emerging materials have potential applications in biomimetic and biomedical devices. Whereas significant efforts have been directed toward the development of IPMC actuators, the establishment of a proper mathematical model that could effectively predict the actuators' dynamic behavior is still a key challenge. This paper presents development of an effective modeling strategy for dynamic analysis of IPCNC actuators undergoing large bending deformations. The proposed model is composed of two parts, namely electrical and mechanical dynamic models. The electrical model describes the actuator as a resistive-capacitive (RC) transmission line, whereas the mechanical model describes the actuator as a system of rigid links connected by spring-damping elements. The proposed modeling approach is validated by experimental data, and the results are discussed. © 2014 Elsevier B.V. All rights reserved.

History

Journal

Sensors and actuators A: physical

Volume

217

Pagination

168 - 182

Publisher

Elsevier

Location

Amsterdam, The Netherlands

ISSN

0924-4247

Language

eng

Publication classification

C Journal article; C1 Refereed article in a scholarly journal

Copyright notice

2014, Elsevier