Numerical modeling of the dynamic tensile behavior of irregular fibers
journal contribution
posted on 2004-01-01, 00:00authored byW He, Xungai Wang
Most fibers are irregular, and they are often subjected to rapid straining during mechanical processing and end-use applications. In this paper, the effect of fiber dimensional irregularities on the dynamic tensile behavior of irregular fibers is examined, using the finite element method (FEM). Fiber dimensional irregularities are simulated with sine waves of different magnitude (10%, 30% and 50% level of diameter variation). The tensile behavior of irregular fibers is examined at different strain rates (333%/sec, 3,333%/sec and 30,000%/sec). The breaking load and breaking extension of irregular fibers at different strain rates are then calculated from the finite element model. The results indicate that strain rate has a significant effect on the dynamic tensile behavior of an irregular fiber, and that the position of the thinnest segment along the fiber affects the simulation results markedly. Under dynamic conditions, an irregular fiber does not necessarily break at the thinnest segment, which is different from the quasi-static results.