Deakin University
Browse

File(s) under permanent embargo

Omega 6 to omega 3 fatty acid imbalance early in life leads to persistant reductions in DHA levels in glycerophospholipids in rat hypothalamus even after long-term omega 3 fatty acid repletion

journal contribution
posted on 2006-06-01, 00:00 authored by D Li, Harrison WeisingerHarrison Weisinger, R Weisinger, M Mathai, James ArmitageJames Armitage, A Vingrys, Andrew SinclairAndrew Sinclair
Failure to provide omega 3 fatty acids in the perinatal period results in alterations in nerve growth factor levels, dopamine production and  permanent elevations in blood pressure. The present study investigated whether changes in brain (i.e., hypothalamus) glycerophospholipid fatty acid profiles induced by a diet rich in omega 6 fatty acids and very low in alpha-linolenic acid (ALA) during pregnancy and the perinatal period could be reversed by subsequent feeding of a diet containing ALA. Female rats (6 per group) were mated and fed either a low ALA diet or a control diet containing ALA throughout pregnancy and until weaning of the pups at 3 weeks. At weaning, the pups (20 per group) remained on the diet of their mothers until 9 weeks, when half the pups were switched onto the other diet, thus generating four groups of animals. At 33 weeks, pups were killed, the hypothalamus dissected from the male rats and analysed for glycerophospholipid fatty acids. In the animals fed the diet with very little ALA and then re-fed the control diet containing high levels of ALA for 24 weeks, the DHA levels were still significantly less than the control values in PE, PS and PI fractions, by 9%, 18% and 34%, respectively. In this group, but not in the other dietary groups, ALA was detected in all glycerophospholipid classes at 0.2–1.7% of the total fatty acids. The results suggest that omega 6–3 PUFA imbalance early in life leads to irreversible changes in hypothalamic composition. The increased ALA and reduced DHA proportions in the animals re-fed ALA in later life are consistent with a dysfunction or down-regulation of the conversion of ALA to 18:4n-3 by the delta-6 desaturase.

History

Journal

Prostaglandins, leukotrienes and essential fatty acids

Volume

74

Issue

6

Pagination

391 - 399

Publisher

Churchill Livingstone

Location

Edinburgh, Scotland

ISSN

0952-3278

eISSN

1532-2823

Language

eng

Publication classification

C1 Refereed article in a scholarly journal

Copyright notice

2006, Elsevier Ltd