This article discusses Lipschitz properties of generated aggregation functions. Such generated functions include triangular norms and conorms, quasi-arithmetic means, uninorms, nullnorms and continuous generated functions with a neutral element. The Lipschitz property guarantees stability of aggregation operations with respect to input inaccuracies, and is important for applications. We provide verifiable sufficient conditions to determine when a generated aggregation function holds the k-Lipschitz property, and calculate the Lipschitz constants of power means. We also establish sufficient conditions which guarantee that a generated aggregation function is not Lipschitz. We found the only 1-Lipschitz generated function with a neutral element e ∈]0, 1[.