Deakin University
Browse

On self-propagating methodological flaws in performance normalization for strength and power sports

journal contribution
posted on 2013-01-01, 00:00 authored by Ognjen Arandjelovic
Performance in strength and power sports is greatly affected by a variety of anthropometric factors. The goal of performance normalization is to factor out the effects of confounding factors and compute a canonical (normalized) performance measure from the observed absolute performance. Performance normalization is applied in the ranking of elite athletes, as well as in the early stages of youth talent selection. Consequently, it is crucial that the process is principled and fair. The corpus of previous work on this topic, which is significant, is uniform in the methodology adopted. Performance normalization is universally reduced to a regression task: the collected performance data are used to fit a regression function that is then used to scale future performances. The present article demonstrates that this approach is fundamentally flawed. It inherently creates a bias that unfairly penalizes athletes with certain allometric characteristics, and, by virtue of its adoption in the ranking and selection of elite athletes, propagates and strengthens this bias over time. The main flaws are shown to originate in the criteria for selecting the data used for regression, as well as in the manner in which the regression model is applied in normalization. This analysis brings into light the aforesaid methodological flaws and motivates further work on the development of principled methods, the foundations of which are also laid out in this work.

History

Journal

Sports medicine

Volume

43

Issue

6

Pagination

451 - 461

Publisher

Adis International

Location

Auckland, New Zealand

ISSN

0112-1642

eISSN

1179-2035

Language

eng

Notes

2-s2.0-84878554901

Publication classification

C1 Refereed article in a scholarly journal

Copyright notice

2013, Adis International

Usage metrics

    Research Publications

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC