While the primary purpose of edge detection schemes is to be able to produce an edge map of a given image, the ability to distinguish between different feature types is also of importance. In this paper we examine feature classification based on local energy detection and show that local energy measures are intrinsically capable of making this classification because of the use of odd and even filters. The advantage of feature classification is that it allows for the elimination of certain feature types from the edge map, thus simplifying the task of object recognition.