Deakin University
Browse

File(s) not publicly available

On the use of Machine Learning methods in rock art research with application to automatic painted rock art identification

journal contribution
posted on 2022-09-29, 06:49 authored by A Jalandoni, Y Zhang, Nayyar ZaidiNayyar Zaidi
Rock art is globally recognized as significant, yet the resources allocated to the study and exploration of this important form of cultural heritage are often scarce. In areas where numerous rock art sites exist, much of the rock art is unidentified and therefore remains, unrecorded and unresearched. Manually identifying rock art is time-consuming, tedious, and expensive. Therefore, it is necessary to automate many processes in rock art research, which can be accomplished by Machine Learning. Artificial Intelligence (AI) and Machine Learning (ML) can greatly facilitate rock art research in many ways, such as through Object Recognition and Detection, Motif Extraction, Object Reconstruction, Image Knowledge Graphs, and Representations. This article is a reflective work on the future of ML for rock art research. As a proof-of-concept, it presents a machine learning method based on recent advances in deep learning to train a model to identify images with painted rock art (pictograms). The efficacy of the proposed method is shown using data collected from fieldwork in Australia. Furthermore, our proposed method can be used to train models that are specific to the rock art found in different regions. We provide the code and the trained models in the supplementary section.

History

Journal

Journal of Archaeological Science

Volume

144

ISSN

0305-4403

eISSN

1095-9238

Publication classification

C1 Refereed article in a scholarly journal

Usage metrics

    Research Publications

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC