Deakin University
Browse

File(s) under permanent embargo

Optimisation of nonlinear motion cueing algorithm based on genetic algorithm

journal contribution
posted on 2015-01-01, 00:00 authored by Houshyar AsadiHoushyar Asadi, Shady MohamedShady Mohamed, D R Zadeh, Saeid Nahavandi
Motion cueing algorithms (MCAs) are playing a significant role in driving simulators, aiming to deliver the most accurate human sensation to the simulator drivers compared with a real vehicle driver, without exceeding the physical limitations of the simulator. This paper provides the optimisation design of an MCA for a vehicle simulator, in order to find the most suitable washout algorithm parameters, while respecting all motion platform physical limitations, and minimising human perception error between real and simulator driver. One of the main limitations of the classical washout filters is that it is attuned by the worst-case scenario tuning method. This is based on trial and error, and is effected by driving and programmers experience, making this the most significant obstacle to full motion platform utilisation. This leads to inflexibility of the structure, production of false cues and makes the resulting simulator fail to suit all circumstances. In addition, the classical method does not take minimisation of human perception error and physical constraints into account. Production of motion cues and the impact of different parameters of classical washout filters on motion cues remain inaccessible for designers for this reason. The aim of this paper is to provide an optimisation method for tuning the MCA parameters, based on nonlinear filtering and genetic algorithms. This is done by taking vestibular sensation error into account between real and simulated cases, as well as main dynamic limitations, tilt coordination and correlation coefficient. Three additional compensatory linear blocks are integrated into the MCA, to be tuned in order to modify the performance of the filters successfully. The proposed optimised MCA is implemented in MATLAB/Simulink software packages. The results generated using the proposed method show increased performance in terms of human sensation, reference shape tracking and exploiting the platform more efficiently without reaching the motion limitations.

History

Journal

Vehicle system dynamics

Volume

53

Issue

4

Pagination

526 - 545

Publisher

Taylor & Francis

Location

Oxford, Eng.

ISSN

0042-3114

eISSN

1744-5159

Language

eng

Publication classification

C Journal article; C1 Refereed article in a scholarly journal

Copyright notice

2015, Taylor & Francis

Usage metrics

    Research Publications

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC