The present paper is devoted to new algorithms for unsupervised clustering based on the optimization approaches due to [2], [3] and [4]. We consider a novel situation, where the datasets consist of nucleotide or protein sequences and rather sophisticated biologically significant alignment scores have to be used as a measure of distance. Sequences of this kind cannot be regarded as points in a finite dimensional space. Besides, the alignment scores do not satisfy properties of Minkowski metrics. Nevertheless the optimization approaches have made it possible to introduce a new k-committees algorithm and compare its performance with previous algorithms for two datasets. Our experimental results show that the k-committees algorithms achieves intermediate accuracy for a dataset of ITS sequences, and it can perform better than the discrete k-means and Nearest Neighbour algorithms for certain datasets. All three algorithms achieve good agreement with clusters published in the biological literature before and can be used to obtain biologically significant clusterings.